Metamath Proof Explorer


Theorem decpmate

Description: An entry of the matrix consisting of the coefficients in the entries of a polynomial matrix is the corresponding coefficient in the polynomial entry of the given matrix. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmate.p 𝑃 = ( Poly1𝑅 )
decpmate.c 𝐶 = ( 𝑁 Mat 𝑃 )
decpmate.b 𝐵 = ( Base ‘ 𝐶 )
Assertion decpmate ( ( ( 𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0 ) ∧ ( 𝐼𝑁𝐽𝑁 ) ) → ( 𝐼 ( 𝑀 decompPMat 𝐾 ) 𝐽 ) = ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 decpmate.p 𝑃 = ( Poly1𝑅 )
2 decpmate.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 decpmate.b 𝐵 = ( Base ‘ 𝐶 )
4 2 3 decpmatval ( ( 𝑀𝐵𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) )
5 4 3adant1 ( ( 𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) )
6 5 adantr ( ( ( 𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0 ) ∧ ( 𝐼𝑁𝐽𝑁 ) ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) )
7 oveq12 ( ( 𝑖 = 𝐼𝑗 = 𝐽 ) → ( 𝑖 𝑀 𝑗 ) = ( 𝐼 𝑀 𝐽 ) )
8 7 fveq2d ( ( 𝑖 = 𝐼𝑗 = 𝐽 ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) )
9 8 fveq1d ( ( 𝑖 = 𝐼𝑗 = 𝐽 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) )
10 9 adantl ( ( ( ( 𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0 ) ∧ ( 𝐼𝑁𝐽𝑁 ) ) ∧ ( 𝑖 = 𝐼𝑗 = 𝐽 ) ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) )
11 simprl ( ( ( 𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0 ) ∧ ( 𝐼𝑁𝐽𝑁 ) ) → 𝐼𝑁 )
12 simprr ( ( ( 𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0 ) ∧ ( 𝐼𝑁𝐽𝑁 ) ) → 𝐽𝑁 )
13 fvexd ( ( ( 𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0 ) ∧ ( 𝐼𝑁𝐽𝑁 ) ) → ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) ∈ V )
14 6 10 11 12 13 ovmpod ( ( ( 𝑅𝑉𝑀𝐵𝐾 ∈ ℕ0 ) ∧ ( 𝐼𝑁𝐽𝑁 ) ) → ( 𝐼 ( 𝑀 decompPMat 𝐾 ) 𝐽 ) = ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) )