| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmate.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | decpmate.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | decpmate.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 | 2 3 | decpmatval | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) | 
						
							| 5 | 4 | 3adant1 | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) )  →  ( 𝑀  decompPMat  𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) | 
						
							| 7 |  | oveq12 | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑗  =  𝐽 )  →  ( 𝑖 𝑀 𝑗 )  =  ( 𝐼 𝑀 𝐽 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑗  =  𝐽 )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( ( 𝑖  =  𝐼  ∧  𝑗  =  𝐽 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) )  ∧  ( 𝑖  =  𝐼  ∧  𝑗  =  𝐽 ) )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) )  →  𝐼  ∈  𝑁 ) | 
						
							| 12 |  | simprr | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) )  →  𝐽  ∈  𝑁 ) | 
						
							| 13 |  | fvexd | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) )  →  ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 )  ∈  V ) | 
						
							| 14 | 6 10 11 12 13 | ovmpod | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝐼  ∈  𝑁  ∧  𝐽  ∈  𝑁 ) )  →  ( 𝐼 ( 𝑀  decompPMat  𝐾 ) 𝐽 )  =  ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) ) |