| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmate.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | decpmate.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | decpmate.b |  |-  B = ( Base ` C ) | 
						
							| 4 | 2 3 | decpmatval |  |-  ( ( M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) | 
						
							| 5 | 4 | 3adant1 |  |-  ( ( R e. V /\ M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) | 
						
							| 7 |  | oveq12 |  |-  ( ( i = I /\ j = J ) -> ( i M j ) = ( I M J ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( i = I /\ j = J ) -> ( coe1 ` ( i M j ) ) = ( coe1 ` ( I M J ) ) ) | 
						
							| 9 | 8 | fveq1d |  |-  ( ( i = I /\ j = J ) -> ( ( coe1 ` ( i M j ) ) ` K ) = ( ( coe1 ` ( I M J ) ) ` K ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) /\ ( i = I /\ j = J ) ) -> ( ( coe1 ` ( i M j ) ) ` K ) = ( ( coe1 ` ( I M J ) ) ` K ) ) | 
						
							| 11 |  | simprl |  |-  ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> I e. N ) | 
						
							| 12 |  | simprr |  |-  ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> J e. N ) | 
						
							| 13 |  | fvexd |  |-  ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> ( ( coe1 ` ( I M J ) ) ` K ) e. _V ) | 
						
							| 14 | 6 10 11 12 13 | ovmpod |  |-  ( ( ( R e. V /\ M e. B /\ K e. NN0 ) /\ ( I e. N /\ J e. N ) ) -> ( I ( M decompPMat K ) J ) = ( ( coe1 ` ( I M J ) ) ` K ) ) |