| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmatval.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | decpmatval.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | decpmatval0 |  |-  ( ( M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 | 1 4 2 | matbas2i |  |-  ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 6 |  | elmapi |  |-  ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 7 |  | fdm |  |-  ( M : ( N X. N ) --> ( Base ` R ) -> dom M = ( N X. N ) ) | 
						
							| 8 | 7 | dmeqd |  |-  ( M : ( N X. N ) --> ( Base ` R ) -> dom dom M = dom ( N X. N ) ) | 
						
							| 9 |  | dmxpid |  |-  dom ( N X. N ) = N | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( M : ( N X. N ) --> ( Base ` R ) -> dom dom M = N ) | 
						
							| 11 | 5 6 10 | 3syl |  |-  ( M e. B -> dom dom M = N ) | 
						
							| 12 | 11 | adantr |  |-  ( ( M e. B /\ K e. NN0 ) -> dom dom M = N ) | 
						
							| 13 |  | eqidd |  |-  ( ( M e. B /\ K e. NN0 ) -> ( ( coe1 ` ( i M j ) ) ` K ) = ( ( coe1 ` ( i M j ) ) ` K ) ) | 
						
							| 14 | 12 12 13 | mpoeq123dv |  |-  ( ( M e. B /\ K e. NN0 ) -> ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` K ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) | 
						
							| 15 | 3 14 | eqtrd |  |-  ( ( M e. B /\ K e. NN0 ) -> ( M decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` K ) ) ) |