| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p |  | 
						
							| 2 |  | pm2mpval.c |  | 
						
							| 3 |  | pm2mpval.b |  | 
						
							| 4 |  | pm2mpval.m |  | 
						
							| 5 |  | pm2mpval.e |  | 
						
							| 6 |  | pm2mpval.x |  | 
						
							| 7 |  | pm2mpval.a |  | 
						
							| 8 |  | pm2mpval.q |  | 
						
							| 9 |  | pm2mpval.t |  | 
						
							| 10 |  | pm2mpcl.l |  | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 | pm2mpfval |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 7 | matring |  | 
						
							| 14 | 8 | ply1ring |  | 
						
							| 15 |  | ringcmn |  | 
						
							| 16 | 13 14 15 | 3syl |  | 
						
							| 17 | 16 | 3adant3 |  | 
						
							| 18 |  | nn0ex |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 | 13 | 3adant3 |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | simpl2 |  | 
						
							| 23 |  | simpl3 |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 1 2 3 7 25 | decpmatcl |  | 
						
							| 27 | 22 23 24 26 | syl3anc |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 25 8 6 4 28 5 10 | ply1tmcl |  | 
						
							| 30 | 21 27 24 29 | syl3anc |  | 
						
							| 31 | 30 | fmpttd |  | 
						
							| 32 | 8 | ply1lmod |  | 
						
							| 33 | 20 32 | syl |  | 
						
							| 34 |  | eqidd |  | 
						
							| 35 | 8 6 28 5 10 | ply1moncl |  | 
						
							| 36 | 20 35 | sylan |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 1 2 3 7 38 | decpmatfsupp |  | 
						
							| 40 | 39 | 3adant1 |  | 
						
							| 41 | 8 | ply1sca |  | 
						
							| 42 | 41 | eqcomd |  | 
						
							| 43 | 20 42 | syl |  | 
						
							| 44 | 43 | fveq2d |  | 
						
							| 45 | 40 44 | breqtrrd |  | 
						
							| 46 | 19 33 34 10 27 36 12 37 4 45 | mptscmfsupp0 |  | 
						
							| 47 | 10 12 17 19 31 46 | gsumcl |  | 
						
							| 48 | 11 47 | eqeltrd |  |