Metamath Proof Explorer


Theorem ply1tmcl

Description: Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 25-Nov-2019)

Ref Expression
Hypotheses ply1tmcl.k K = Base R
ply1tmcl.p P = Poly 1 R
ply1tmcl.x X = var 1 R
ply1tmcl.m · ˙ = P
ply1tmcl.n N = mulGrp P
ply1tmcl.e × ˙ = N
ply1tmcl.b B = Base P
Assertion ply1tmcl R Ring C K D 0 C · ˙ D × ˙ X B

Proof

Step Hyp Ref Expression
1 ply1tmcl.k K = Base R
2 ply1tmcl.p P = Poly 1 R
3 ply1tmcl.x X = var 1 R
4 ply1tmcl.m · ˙ = P
5 ply1tmcl.n N = mulGrp P
6 ply1tmcl.e × ˙ = N
7 ply1tmcl.b B = Base P
8 2 ply1lmod R Ring P LMod
9 8 3ad2ant1 R Ring C K D 0 P LMod
10 simp2 R Ring C K D 0 C K
11 2 3 5 6 7 ply1moncl R Ring D 0 D × ˙ X B
12 11 3adant2 R Ring C K D 0 D × ˙ X B
13 2 ply1sca2 I R = Scalar P
14 baseid Base = Slot Base ndx
15 14 1 strfvi K = Base I R
16 7 13 4 15 lmodvscl P LMod C K D × ˙ X B C · ˙ D × ˙ X B
17 9 10 12 16 syl3anc R Ring C K D 0 C · ˙ D × ˙ X B