Metamath Proof Explorer


Theorem ply1tmcl

Description: Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 25-Nov-2019)

Ref Expression
Hypotheses ply1tmcl.k
|- K = ( Base ` R )
ply1tmcl.p
|- P = ( Poly1 ` R )
ply1tmcl.x
|- X = ( var1 ` R )
ply1tmcl.m
|- .x. = ( .s ` P )
ply1tmcl.n
|- N = ( mulGrp ` P )
ply1tmcl.e
|- .^ = ( .g ` N )
ply1tmcl.b
|- B = ( Base ` P )
Assertion ply1tmcl
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( D .^ X ) ) e. B )

Proof

Step Hyp Ref Expression
1 ply1tmcl.k
 |-  K = ( Base ` R )
2 ply1tmcl.p
 |-  P = ( Poly1 ` R )
3 ply1tmcl.x
 |-  X = ( var1 ` R )
4 ply1tmcl.m
 |-  .x. = ( .s ` P )
5 ply1tmcl.n
 |-  N = ( mulGrp ` P )
6 ply1tmcl.e
 |-  .^ = ( .g ` N )
7 ply1tmcl.b
 |-  B = ( Base ` P )
8 2 ply1lmod
 |-  ( R e. Ring -> P e. LMod )
9 8 3ad2ant1
 |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> P e. LMod )
10 simp2
 |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> C e. K )
11 2 3 5 6 7 ply1moncl
 |-  ( ( R e. Ring /\ D e. NN0 ) -> ( D .^ X ) e. B )
12 11 3adant2
 |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( D .^ X ) e. B )
13 2 ply1sca2
 |-  ( _I ` R ) = ( Scalar ` P )
14 baseid
 |-  Base = Slot ( Base ` ndx )
15 14 1 strfvi
 |-  K = ( Base ` ( _I ` R ) )
16 7 13 4 15 lmodvscl
 |-  ( ( P e. LMod /\ C e. K /\ ( D .^ X ) e. B ) -> ( C .x. ( D .^ X ) ) e. B )
17 9 10 12 16 syl3anc
 |-  ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( D .^ X ) ) e. B )