Step |
Hyp |
Ref |
Expression |
1 |
|
ply1tmcl.k |
|- K = ( Base ` R ) |
2 |
|
ply1tmcl.p |
|- P = ( Poly1 ` R ) |
3 |
|
ply1tmcl.x |
|- X = ( var1 ` R ) |
4 |
|
ply1tmcl.m |
|- .x. = ( .s ` P ) |
5 |
|
ply1tmcl.n |
|- N = ( mulGrp ` P ) |
6 |
|
ply1tmcl.e |
|- .^ = ( .g ` N ) |
7 |
|
ply1tmcl.b |
|- B = ( Base ` P ) |
8 |
2
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
9 |
8
|
3ad2ant1 |
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> P e. LMod ) |
10 |
|
simp2 |
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> C e. K ) |
11 |
2 3 5 6 7
|
ply1moncl |
|- ( ( R e. Ring /\ D e. NN0 ) -> ( D .^ X ) e. B ) |
12 |
11
|
3adant2 |
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( D .^ X ) e. B ) |
13 |
2
|
ply1sca2 |
|- ( _I ` R ) = ( Scalar ` P ) |
14 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
15 |
14 1
|
strfvi |
|- K = ( Base ` ( _I ` R ) ) |
16 |
7 13 4 15
|
lmodvscl |
|- ( ( P e. LMod /\ C e. K /\ ( D .^ X ) e. B ) -> ( C .x. ( D .^ X ) ) e. B ) |
17 |
9 10 12 16
|
syl3anc |
|- ( ( R e. Ring /\ C e. K /\ D e. NN0 ) -> ( C .x. ( D .^ X ) ) e. B ) |