| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1lmod.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
fvi |
|- ( R e. _V -> ( _I ` R ) = R ) |
| 3 |
1
|
ply1sca |
|- ( R e. _V -> R = ( Scalar ` P ) ) |
| 4 |
2 3
|
eqtrd |
|- ( R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) |
| 5 |
|
fvprc |
|- ( -. R e. _V -> ( _I ` R ) = (/) ) |
| 6 |
|
fvprc |
|- ( -. R e. _V -> ( Poly1 ` R ) = (/) ) |
| 7 |
6
|
fveq2d |
|- ( -. R e. _V -> ( Scalar ` ( Poly1 ` R ) ) = ( Scalar ` (/) ) ) |
| 8 |
1
|
fveq2i |
|- ( Scalar ` P ) = ( Scalar ` ( Poly1 ` R ) ) |
| 9 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
| 10 |
9
|
str0 |
|- (/) = ( Scalar ` (/) ) |
| 11 |
7 8 10
|
3eqtr4g |
|- ( -. R e. _V -> ( Scalar ` P ) = (/) ) |
| 12 |
5 11
|
eqtr4d |
|- ( -. R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) |
| 13 |
4 12
|
pm2.61i |
|- ( _I ` R ) = ( Scalar ` P ) |