Step |
Hyp |
Ref |
Expression |
1 |
|
ply1lmod.p |
|- P = ( Poly1 ` R ) |
2 |
|
fvi |
|- ( R e. _V -> ( _I ` R ) = R ) |
3 |
1
|
ply1sca |
|- ( R e. _V -> R = ( Scalar ` P ) ) |
4 |
2 3
|
eqtrd |
|- ( R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) |
5 |
|
fvprc |
|- ( -. R e. _V -> ( _I ` R ) = (/) ) |
6 |
|
fvprc |
|- ( -. R e. _V -> ( Poly1 ` R ) = (/) ) |
7 |
6
|
fveq2d |
|- ( -. R e. _V -> ( Scalar ` ( Poly1 ` R ) ) = ( Scalar ` (/) ) ) |
8 |
1
|
fveq2i |
|- ( Scalar ` P ) = ( Scalar ` ( Poly1 ` R ) ) |
9 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
10 |
9
|
str0 |
|- (/) = ( Scalar ` (/) ) |
11 |
7 8 10
|
3eqtr4g |
|- ( -. R e. _V -> ( Scalar ` P ) = (/) ) |
12 |
5 11
|
eqtr4d |
|- ( -. R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) |
13 |
4 12
|
pm2.61i |
|- ( _I ` R ) = ( Scalar ` P ) |