Step |
Hyp |
Ref |
Expression |
1 |
|
ply1lmod.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
fvi |
⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) |
3 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
4 |
2 3
|
eqtrd |
⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) ) |
5 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) |
6 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ∅ ) |
7 |
6
|
fveq2d |
⊢ ( ¬ 𝑅 ∈ V → ( Scalar ‘ ( Poly1 ‘ 𝑅 ) ) = ( Scalar ‘ ∅ ) ) |
8 |
1
|
fveq2i |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ ( Poly1 ‘ 𝑅 ) ) |
9 |
|
scaid |
⊢ Scalar = Slot ( Scalar ‘ ndx ) |
10 |
9
|
str0 |
⊢ ∅ = ( Scalar ‘ ∅ ) |
11 |
7 8 10
|
3eqtr4g |
⊢ ( ¬ 𝑅 ∈ V → ( Scalar ‘ 𝑃 ) = ∅ ) |
12 |
5 11
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) ) |
13 |
4 12
|
pm2.61i |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |