| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1mpl0.m |
⊢ 𝑀 = ( 1o mPoly 𝑅 ) |
| 2 |
|
ply1mpl0.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
ply1mpl0.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 4 |
|
eqidd |
⊢ ( ⊤ → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 6 |
2 5
|
ply1bas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 7 |
1
|
fveq2i |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 8 |
6 7
|
eqtr4i |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑀 ) |
| 9 |
8
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑀 ) ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 11 |
2 1 10
|
ply1plusg |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑀 ) |
| 12 |
11
|
a1i |
⊢ ( ⊤ → ( +g ‘ 𝑃 ) = ( +g ‘ 𝑀 ) ) |
| 13 |
12
|
oveqdr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 14 |
4 9 13
|
grpidpropd |
⊢ ( ⊤ → ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑀 ) ) |
| 15 |
14
|
mptru |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑀 ) |
| 16 |
3 15
|
eqtri |
⊢ 0 = ( 0g ‘ 𝑀 ) |