Metamath Proof Explorer


Theorem ply10s0

Description: Zero times a univariate polynomial is the zero polynomial ( lmod0vs analog.) (Contributed by AV, 2-Dec-2019)

Ref Expression
Hypotheses ply10s0.p 𝑃 = ( Poly1𝑅 )
ply10s0.b 𝐵 = ( Base ‘ 𝑃 )
ply10s0.m = ( ·𝑠𝑃 )
ply10s0.e 0 = ( 0g𝑅 )
Assertion ply10s0 ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 0 𝑀 ) = ( 0g𝑃 ) )

Proof

Step Hyp Ref Expression
1 ply10s0.p 𝑃 = ( Poly1𝑅 )
2 ply10s0.b 𝐵 = ( Base ‘ 𝑃 )
3 ply10s0.m = ( ·𝑠𝑃 )
4 ply10s0.e 0 = ( 0g𝑅 )
5 1 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) )
6 5 adantr ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝑅 = ( Scalar ‘ 𝑃 ) )
7 6 fveq2d ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 0g𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) )
8 4 7 syl5eq ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) )
9 8 oveq1d ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 0 𝑀 ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) 𝑀 ) )
10 1 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
11 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
12 eqid ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) )
13 eqid ( 0g𝑃 ) = ( 0g𝑃 )
14 2 11 3 12 13 lmod0vs ( ( 𝑃 ∈ LMod ∧ 𝑀𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) 𝑀 ) = ( 0g𝑃 ) )
15 10 14 sylan ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) 𝑀 ) = ( 0g𝑃 ) )
16 9 15 eqtrd ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 0 𝑀 ) = ( 0g𝑃 ) )