| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply10s0.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply10s0.b |
|- B = ( Base ` P ) |
| 3 |
|
ply10s0.m |
|- .* = ( .s ` P ) |
| 4 |
|
ply10s0.e |
|- .0. = ( 0g ` R ) |
| 5 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 6 |
5
|
adantr |
|- ( ( R e. Ring /\ M e. B ) -> R = ( Scalar ` P ) ) |
| 7 |
6
|
fveq2d |
|- ( ( R e. Ring /\ M e. B ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
| 8 |
4 7
|
eqtrid |
|- ( ( R e. Ring /\ M e. B ) -> .0. = ( 0g ` ( Scalar ` P ) ) ) |
| 9 |
8
|
oveq1d |
|- ( ( R e. Ring /\ M e. B ) -> ( .0. .* M ) = ( ( 0g ` ( Scalar ` P ) ) .* M ) ) |
| 10 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 11 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 12 |
|
eqid |
|- ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) |
| 13 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 14 |
2 11 3 12 13
|
lmod0vs |
|- ( ( P e. LMod /\ M e. B ) -> ( ( 0g ` ( Scalar ` P ) ) .* M ) = ( 0g ` P ) ) |
| 15 |
10 14
|
sylan |
|- ( ( R e. Ring /\ M e. B ) -> ( ( 0g ` ( Scalar ` P ) ) .* M ) = ( 0g ` P ) ) |
| 16 |
9 15
|
eqtrd |
|- ( ( R e. Ring /\ M e. B ) -> ( .0. .* M ) = ( 0g ` P ) ) |