| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1lmod.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
| 3 |
2
|
psr1lmod |
|- ( R e. Ring -> ( PwSer1 ` R ) e. LMod ) |
| 4 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 5 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
| 6 |
4 5
|
ply1bas |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( 1o mPoly R ) ) |
| 7 |
4 2 5
|
ply1lss |
|- ( R e. Ring -> ( Base ` ( Poly1 ` R ) ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) |
| 8 |
6 7
|
eqeltrrid |
|- ( R e. Ring -> ( Base ` ( 1o mPoly R ) ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) |
| 9 |
1 2
|
ply1val |
|- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 10 |
|
eqid |
|- ( LSubSp ` ( PwSer1 ` R ) ) = ( LSubSp ` ( PwSer1 ` R ) ) |
| 11 |
9 10
|
lsslmod |
|- ( ( ( PwSer1 ` R ) e. LMod /\ ( Base ` ( 1o mPoly R ) ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) -> P e. LMod ) |
| 12 |
3 8 11
|
syl2anc |
|- ( R e. Ring -> P e. LMod ) |