| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1val.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1bas.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 3 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 4 |
|
eqid |
⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 6 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) |
| 8 |
6 7 4
|
psr1bas2 |
⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
| 9 |
3 4 5 8
|
mplbasss |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) ⊆ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) |
| 10 |
1 6
|
ply1val |
⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 11 |
10 7
|
ressbas2 |
⊢ ( ( Base ‘ ( 1o mPoly 𝑅 ) ) ⊆ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) → ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ 𝑃 ) ) |
| 12 |
9 11
|
ax-mp |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ 𝑃 ) |
| 13 |
2 12
|
eqtr4i |
⊢ 𝑈 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |