| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1val.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1val.2 |
⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) |
| 3 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( PwSer1 ‘ 𝑟 ) = ( PwSer1 ‘ 𝑅 ) ) |
| 4 |
3 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( PwSer1 ‘ 𝑟 ) = 𝑆 ) |
| 5 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 1o mPoly 𝑟 ) = ( 1o mPoly 𝑅 ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ ( 1o mPoly 𝑟 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 7 |
4 6
|
oveq12d |
⊢ ( 𝑟 = 𝑅 → ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 8 |
|
df-ply1 |
⊢ Poly1 = ( 𝑟 ∈ V ↦ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) ) |
| 9 |
|
ovex |
⊢ ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ∈ V |
| 10 |
7 8 9
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 11 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ∅ ) |
| 12 |
|
ress0 |
⊢ ( ∅ ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) = ∅ |
| 13 |
11 12
|
eqtr4di |
⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( ∅ ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 14 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( PwSer1 ‘ 𝑅 ) = ∅ ) |
| 15 |
2 14
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝑆 = ∅ ) |
| 16 |
15
|
oveq1d |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) = ( ∅ ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 17 |
13 16
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 18 |
10 17
|
pm2.61i |
⊢ ( Poly1 ‘ 𝑅 ) = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 19 |
1 18
|
eqtri |
⊢ 𝑃 = ( 𝑆 ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |