| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1mpl0.m |
|- M = ( 1o mPoly R ) |
| 2 |
|
ply1mpl0.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
ply1mpl0.z |
|- .0. = ( 0g ` P ) |
| 4 |
|
eqidd |
|- ( T. -> ( Base ` P ) = ( Base ` P ) ) |
| 5 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 6 |
2 5
|
ply1bas |
|- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 7 |
1
|
fveq2i |
|- ( Base ` M ) = ( Base ` ( 1o mPoly R ) ) |
| 8 |
6 7
|
eqtr4i |
|- ( Base ` P ) = ( Base ` M ) |
| 9 |
8
|
a1i |
|- ( T. -> ( Base ` P ) = ( Base ` M ) ) |
| 10 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 11 |
2 1 10
|
ply1plusg |
|- ( +g ` P ) = ( +g ` M ) |
| 12 |
11
|
a1i |
|- ( T. -> ( +g ` P ) = ( +g ` M ) ) |
| 13 |
12
|
oveqdr |
|- ( ( T. /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( +g ` P ) y ) = ( x ( +g ` M ) y ) ) |
| 14 |
4 9 13
|
grpidpropd |
|- ( T. -> ( 0g ` P ) = ( 0g ` M ) ) |
| 15 |
14
|
mptru |
|- ( 0g ` P ) = ( 0g ` M ) |
| 16 |
3 15
|
eqtri |
|- .0. = ( 0g ` M ) |