| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1moncl.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1moncl.x |
|- X = ( var1 ` R ) |
| 3 |
|
ply1moncl.n |
|- N = ( mulGrp ` P ) |
| 4 |
|
ply1moncl.e |
|- .^ = ( .g ` N ) |
| 5 |
|
ply1moncl.b |
|- B = ( Base ` P ) |
| 6 |
3 5
|
mgpbas |
|- B = ( Base ` N ) |
| 7 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 8 |
3
|
ringmgp |
|- ( P e. Ring -> N e. Mnd ) |
| 9 |
7 8
|
syl |
|- ( R e. Ring -> N e. Mnd ) |
| 10 |
9
|
adantr |
|- ( ( R e. Ring /\ D e. NN0 ) -> N e. Mnd ) |
| 11 |
|
simpr |
|- ( ( R e. Ring /\ D e. NN0 ) -> D e. NN0 ) |
| 12 |
2 1 5
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
| 13 |
12
|
adantr |
|- ( ( R e. Ring /\ D e. NN0 ) -> X e. B ) |
| 14 |
6 4 10 11 13
|
mulgnn0cld |
|- ( ( R e. Ring /\ D e. NN0 ) -> ( D .^ X ) e. B ) |