Step |
Hyp |
Ref |
Expression |
1 |
|
ply1tmcl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
ply1tmcl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
ply1tmcl.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
4 |
|
ply1tmcl.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
5 |
|
ply1tmcl.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
6 |
|
ply1tmcl.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
7 |
|
ply1tmcl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
8 |
2
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
10 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐶 ∈ 𝐾 ) |
11 |
2 3 5 6 7
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) |
13 |
2
|
ply1sca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
14 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
15 |
14 1
|
strfvi |
⊢ 𝐾 = ( Base ‘ ( I ‘ 𝑅 ) ) |
16 |
7 13 4 15
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ ( 𝐷 ↑ 𝑋 ) ∈ 𝐵 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ) |
17 |
9 10 12 16
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ) |