Metamath Proof Explorer


Theorem ply1tmcl

Description: Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 25-Nov-2019)

Ref Expression
Hypotheses ply1tmcl.k 𝐾 = ( Base ‘ 𝑅 )
ply1tmcl.p 𝑃 = ( Poly1𝑅 )
ply1tmcl.x 𝑋 = ( var1𝑅 )
ply1tmcl.m · = ( ·𝑠𝑃 )
ply1tmcl.n 𝑁 = ( mulGrp ‘ 𝑃 )
ply1tmcl.e = ( .g𝑁 )
ply1tmcl.b 𝐵 = ( Base ‘ 𝑃 )
Assertion ply1tmcl ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 𝑋 ) ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ply1tmcl.k 𝐾 = ( Base ‘ 𝑅 )
2 ply1tmcl.p 𝑃 = ( Poly1𝑅 )
3 ply1tmcl.x 𝑋 = ( var1𝑅 )
4 ply1tmcl.m · = ( ·𝑠𝑃 )
5 ply1tmcl.n 𝑁 = ( mulGrp ‘ 𝑃 )
6 ply1tmcl.e = ( .g𝑁 )
7 ply1tmcl.b 𝐵 = ( Base ‘ 𝑃 )
8 2 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
9 8 3ad2ant1 ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0 ) → 𝑃 ∈ LMod )
10 simp2 ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0 ) → 𝐶𝐾 )
11 2 3 5 6 7 ply1moncl ( ( 𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 𝑋 ) ∈ 𝐵 )
12 11 3adant2 ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0 ) → ( 𝐷 𝑋 ) ∈ 𝐵 )
13 2 ply1sca2 ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 )
14 baseid Base = Slot ( Base ‘ ndx )
15 14 1 strfvi 𝐾 = ( Base ‘ ( I ‘ 𝑅 ) )
16 7 13 4 15 lmodvscl ( ( 𝑃 ∈ LMod ∧ 𝐶𝐾 ∧ ( 𝐷 𝑋 ) ∈ 𝐵 ) → ( 𝐶 · ( 𝐷 𝑋 ) ) ∈ 𝐵 )
17 9 10 12 16 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 𝑋 ) ) ∈ 𝐵 )