| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1tm.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 2 |
|
coe1tm.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 3 |
|
coe1tm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 4 |
|
coe1tm.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 5 |
|
coe1tm.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 6 |
|
coe1tm.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
| 7 |
|
coe1tm.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 9 |
2 3 4 5 6 7 8
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 10 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) |
| 12 |
10 8 3 11
|
coe1fval2 |
⊢ ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) ) |
| 13 |
9 12
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) ) |
| 14 |
|
fconst6g |
⊢ ( 𝑥 ∈ ℕ0 → ( 1o × { 𝑥 } ) : 1o ⟶ ℕ0 ) |
| 15 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 16 |
|
1oex |
⊢ 1o ∈ V |
| 17 |
15 16
|
elmap |
⊢ ( ( 1o × { 𝑥 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝑥 } ) : 1o ⟶ ℕ0 ) |
| 18 |
14 17
|
sylibr |
⊢ ( 𝑥 ∈ ℕ0 → ( 1o × { 𝑥 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 1o × { 𝑥 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 20 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) |
| 21 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
| 22 |
6 8
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑁 ) |
| 23 |
22
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑁 ) ) |
| 24 |
|
eqid |
⊢ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) = ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) |
| 25 |
3 8
|
ply1bas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 26 |
24 25
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
| 27 |
26
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 28 |
|
ssv |
⊢ ( Base ‘ 𝑃 ) ⊆ V |
| 29 |
28
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) ⊆ V ) |
| 30 |
|
ovexd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ V ) |
| 31 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 32 |
6 31
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑁 ) |
| 33 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 34 |
3 33 31
|
ply1mulr |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
| 35 |
24 34
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
| 36 |
32 35
|
eqtr3i |
⊢ ( +g ‘ 𝑁 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
| 37 |
36
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( +g ‘ 𝑁 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 38 |
37
|
oveqdr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑦 ) ) |
| 39 |
7 21 23 27 29 30 38
|
mulgpropd |
⊢ ( 𝑅 ∈ Ring → ↑ = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 40 |
39
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ↑ = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 41 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐷 = 𝐷 ) |
| 42 |
4
|
vr1val |
⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 43 |
42
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
| 44 |
40 41 43
|
oveq123d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐷 ↑ 𝑋 ) = ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
| 45 |
44
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) = ( 𝐶 · ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) ) |
| 46 |
|
psr1baslem |
⊢ ( ℕ0 ↑m 1o ) = { 𝑎 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } |
| 47 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 48 |
|
1on |
⊢ 1o ∈ On |
| 49 |
48
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 1o ∈ On ) |
| 50 |
|
eqid |
⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) |
| 51 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 52 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 53 |
52
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ∅ ∈ 1o ) |
| 54 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 ) |
| 55 |
33 46 1 47 49 24 21 50 51 53 54
|
mplcoe3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , ( 1r ‘ 𝑅 ) , 0 ) ) = ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
| 56 |
55
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝐶 · ( 𝐷 ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) ) |
| 57 |
3 33 5
|
ply1vsca |
⊢ · = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
| 58 |
|
elsni |
⊢ ( 𝑏 ∈ { ∅ } → 𝑏 = ∅ ) |
| 59 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 60 |
58 59
|
eleq2s |
⊢ ( 𝑏 ∈ 1o → 𝑏 = ∅ ) |
| 61 |
60
|
iftrued |
⊢ ( 𝑏 ∈ 1o → if ( 𝑏 = ∅ , 𝐷 , 0 ) = 𝐷 ) |
| 62 |
61
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑏 ∈ 1o ) → if ( 𝑏 = ∅ , 𝐷 , 0 ) = 𝐷 ) |
| 63 |
62
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) = ( 𝑏 ∈ 1o ↦ 𝐷 ) ) |
| 64 |
|
fconstmpt |
⊢ ( 1o × { 𝐷 } ) = ( 𝑏 ∈ 1o ↦ 𝐷 ) |
| 65 |
63 64
|
eqtr4di |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) = ( 1o × { 𝐷 } ) ) |
| 66 |
|
fconst6g |
⊢ ( 𝐷 ∈ ℕ0 → ( 1o × { 𝐷 } ) : 1o ⟶ ℕ0 ) |
| 67 |
15 16
|
elmap |
⊢ ( ( 1o × { 𝐷 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝐷 } ) : 1o ⟶ ℕ0 ) |
| 68 |
66 67
|
sylibr |
⊢ ( 𝐷 ∈ ℕ0 → ( 1o × { 𝐷 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 69 |
68
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 1o × { 𝐷 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 70 |
65 69
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ∈ ( ℕ0 ↑m 1o ) ) |
| 71 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐶 ∈ 𝐾 ) |
| 72 |
33 57 46 47 1 2 49 51 70 71
|
mplmon2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) ) |
| 73 |
45 56 72
|
3eqtr2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) = ( 𝑦 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) ) |
| 74 |
|
eqeq1 |
⊢ ( 𝑦 = ( 1o × { 𝑥 } ) → ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ↔ ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ) ) |
| 75 |
74
|
ifbid |
⊢ ( 𝑦 = ( 1o × { 𝑥 } ) → if ( 𝑦 = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) = if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) |
| 76 |
19 20 73 75
|
fmptco |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) ) |
| 77 |
65
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) = ( 1o × { 𝐷 } ) ) |
| 78 |
77
|
eqeq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ↔ ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) ) ) |
| 79 |
|
fveq1 |
⊢ ( ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = ( ( 1o × { 𝐷 } ) ‘ ∅ ) ) |
| 80 |
|
vex |
⊢ 𝑥 ∈ V |
| 81 |
80
|
fvconst2 |
⊢ ( ∅ ∈ 1o → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = 𝑥 ) |
| 82 |
52 81
|
mp1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = 𝑥 ) |
| 83 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 ) |
| 84 |
|
fvconst2g |
⊢ ( ( 𝐷 ∈ ℕ0 ∧ ∅ ∈ 1o ) → ( ( 1o × { 𝐷 } ) ‘ ∅ ) = 𝐷 ) |
| 85 |
83 52 84
|
sylancl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝐷 } ) ‘ ∅ ) = 𝐷 ) |
| 86 |
82 85
|
eqeq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 1o × { 𝑥 } ) ‘ ∅ ) = ( ( 1o × { 𝐷 } ) ‘ ∅ ) ↔ 𝑥 = 𝐷 ) ) |
| 87 |
79 86
|
imbitrid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) → 𝑥 = 𝐷 ) ) |
| 88 |
|
sneq |
⊢ ( 𝑥 = 𝐷 → { 𝑥 } = { 𝐷 } ) |
| 89 |
88
|
xpeq2d |
⊢ ( 𝑥 = 𝐷 → ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) ) |
| 90 |
87 89
|
impbid1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 1o × { 𝐷 } ) ↔ 𝑥 = 𝐷 ) ) |
| 91 |
78 90
|
bitrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) ↔ 𝑥 = 𝐷 ) ) |
| 92 |
91
|
ifbid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) = if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) |
| 93 |
92
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑥 ∈ ℕ0 ↦ if ( ( 1o × { 𝑥 } ) = ( 𝑏 ∈ 1o ↦ if ( 𝑏 = ∅ , 𝐷 , 0 ) ) , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |
| 94 |
13 76 93
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |