Description: Univariate polynomial coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1fval.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
| coe1f.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1f.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| coe1fval2.g | ⊢ 𝐺 = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) | ||
| Assertion | coe1fval2 | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
| 2 | coe1f.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | coe1f.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 4 | coe1fval2.g | ⊢ 𝐺 = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) | |
| 5 | 3 2 | ply1bascl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 6 | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) | |
| 7 | eqid | ⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) | |
| 8 | 1 6 7 4 | coe1fval3 | ⊢ ( 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) → 𝐴 = ( 𝐹 ∘ 𝐺 ) ) |
| 9 | 5 8 | syl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ 𝐺 ) ) |