Metamath Proof Explorer


Theorem coe1fval3

Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses coe1fval.a 𝐴 = ( coe1𝐹 )
coe1f2.b 𝐵 = ( Base ‘ 𝑃 )
coe1f2.p 𝑃 = ( PwSer1𝑅 )
coe1fval3.g 𝐺 = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) )
Assertion coe1fval3 ( 𝐹𝐵𝐴 = ( 𝐹𝐺 ) )

Proof

Step Hyp Ref Expression
1 coe1fval.a 𝐴 = ( coe1𝐹 )
2 coe1f2.b 𝐵 = ( Base ‘ 𝑃 )
3 coe1f2.p 𝑃 = ( PwSer1𝑅 )
4 coe1fval3.g 𝐺 = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) )
5 1 coe1fval ( 𝐹𝐵𝐴 = ( 𝑦 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) )
6 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
7 3 2 6 psr1basf ( 𝐹𝐵𝐹 : ( ℕ0m 1o ) ⟶ ( Base ‘ 𝑅 ) )
8 ssv ( Base ‘ 𝑅 ) ⊆ V
9 fss ( ( 𝐹 : ( ℕ0m 1o ) ⟶ ( Base ‘ 𝑅 ) ∧ ( Base ‘ 𝑅 ) ⊆ V ) → 𝐹 : ( ℕ0m 1o ) ⟶ V )
10 7 8 9 sylancl ( 𝐹𝐵𝐹 : ( ℕ0m 1o ) ⟶ V )
11 fconst6g ( 𝑦 ∈ ℕ0 → ( 1o × { 𝑦 } ) : 1o ⟶ ℕ0 )
12 11 adantl ( ( 𝐹 : ( ℕ0m 1o ) ⟶ V ∧ 𝑦 ∈ ℕ0 ) → ( 1o × { 𝑦 } ) : 1o ⟶ ℕ0 )
13 nn0ex 0 ∈ V
14 1oex 1o ∈ V
15 13 14 elmap ( ( 1o × { 𝑦 } ) ∈ ( ℕ0m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o ⟶ ℕ0 )
16 12 15 sylibr ( ( 𝐹 : ( ℕ0m 1o ) ⟶ V ∧ 𝑦 ∈ ℕ0 ) → ( 1o × { 𝑦 } ) ∈ ( ℕ0m 1o ) )
17 4 a1i ( 𝐹 : ( ℕ0m 1o ) ⟶ V → 𝐺 = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) )
18 id ( 𝐹 : ( ℕ0m 1o ) ⟶ V → 𝐹 : ( ℕ0m 1o ) ⟶ V )
19 18 feqmptd ( 𝐹 : ( ℕ0m 1o ) ⟶ V → 𝐹 = ( 𝑥 ∈ ( ℕ0m 1o ) ↦ ( 𝐹𝑥 ) ) )
20 fveq2 ( 𝑥 = ( 1o × { 𝑦 } ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) )
21 16 17 19 20 fmptco ( 𝐹 : ( ℕ0m 1o ) ⟶ V → ( 𝐹𝐺 ) = ( 𝑦 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) )
22 10 21 syl ( 𝐹𝐵 → ( 𝐹𝐺 ) = ( 𝑦 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) )
23 5 22 eqtr4d ( 𝐹𝐵𝐴 = ( 𝐹𝐺 ) )