| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1fval.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
| 2 |
|
coe1f2.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
coe1f2.p |
⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) |
| 4 |
|
coe1fval3.g |
⊢ 𝐺 = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) |
| 5 |
1
|
coe1fval |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝑦 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 7 |
3 2 6
|
psr1basf |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ ( Base ‘ 𝑅 ) ) |
| 8 |
|
ssv |
⊢ ( Base ‘ 𝑅 ) ⊆ V |
| 9 |
|
fss |
⊢ ( ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ ( Base ‘ 𝑅 ) ∧ ( Base ‘ 𝑅 ) ⊆ V ) → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V ) |
| 10 |
7 8 9
|
sylancl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V ) |
| 11 |
|
fconst6g |
⊢ ( 𝑦 ∈ ℕ0 → ( 1o × { 𝑦 } ) : 1o ⟶ ℕ0 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V ∧ 𝑦 ∈ ℕ0 ) → ( 1o × { 𝑦 } ) : 1o ⟶ ℕ0 ) |
| 13 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 14 |
|
1oex |
⊢ 1o ∈ V |
| 15 |
13 14
|
elmap |
⊢ ( ( 1o × { 𝑦 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o ⟶ ℕ0 ) |
| 16 |
12 15
|
sylibr |
⊢ ( ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V ∧ 𝑦 ∈ ℕ0 ) → ( 1o × { 𝑦 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 17 |
4
|
a1i |
⊢ ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V → 𝐺 = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) ) |
| 18 |
|
id |
⊢ ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V ) |
| 19 |
18
|
feqmptd |
⊢ ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V → 𝐹 = ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑥 = ( 1o × { 𝑦 } ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) |
| 21 |
16 17 19 20
|
fmptco |
⊢ ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V → ( 𝐹 ∘ 𝐺 ) = ( 𝑦 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) ) |
| 22 |
10 21
|
syl |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∘ 𝐺 ) = ( 𝑦 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) ) |
| 23 |
5 22
|
eqtr4d |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ 𝐺 ) ) |