Step |
Hyp |
Ref |
Expression |
1 |
|
coe1fval.a |
|- A = ( coe1 ` F ) |
2 |
|
coe1f2.b |
|- B = ( Base ` P ) |
3 |
|
coe1f2.p |
|- P = ( PwSer1 ` R ) |
4 |
|
coe1fval3.g |
|- G = ( y e. NN0 |-> ( 1o X. { y } ) ) |
5 |
1
|
coe1fval |
|- ( F e. B -> A = ( y e. NN0 |-> ( F ` ( 1o X. { y } ) ) ) ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
3 2 6
|
psr1basf |
|- ( F e. B -> F : ( NN0 ^m 1o ) --> ( Base ` R ) ) |
8 |
|
ssv |
|- ( Base ` R ) C_ _V |
9 |
|
fss |
|- ( ( F : ( NN0 ^m 1o ) --> ( Base ` R ) /\ ( Base ` R ) C_ _V ) -> F : ( NN0 ^m 1o ) --> _V ) |
10 |
7 8 9
|
sylancl |
|- ( F e. B -> F : ( NN0 ^m 1o ) --> _V ) |
11 |
|
fconst6g |
|- ( y e. NN0 -> ( 1o X. { y } ) : 1o --> NN0 ) |
12 |
11
|
adantl |
|- ( ( F : ( NN0 ^m 1o ) --> _V /\ y e. NN0 ) -> ( 1o X. { y } ) : 1o --> NN0 ) |
13 |
|
nn0ex |
|- NN0 e. _V |
14 |
|
1oex |
|- 1o e. _V |
15 |
13 14
|
elmap |
|- ( ( 1o X. { y } ) e. ( NN0 ^m 1o ) <-> ( 1o X. { y } ) : 1o --> NN0 ) |
16 |
12 15
|
sylibr |
|- ( ( F : ( NN0 ^m 1o ) --> _V /\ y e. NN0 ) -> ( 1o X. { y } ) e. ( NN0 ^m 1o ) ) |
17 |
4
|
a1i |
|- ( F : ( NN0 ^m 1o ) --> _V -> G = ( y e. NN0 |-> ( 1o X. { y } ) ) ) |
18 |
|
id |
|- ( F : ( NN0 ^m 1o ) --> _V -> F : ( NN0 ^m 1o ) --> _V ) |
19 |
18
|
feqmptd |
|- ( F : ( NN0 ^m 1o ) --> _V -> F = ( x e. ( NN0 ^m 1o ) |-> ( F ` x ) ) ) |
20 |
|
fveq2 |
|- ( x = ( 1o X. { y } ) -> ( F ` x ) = ( F ` ( 1o X. { y } ) ) ) |
21 |
16 17 19 20
|
fmptco |
|- ( F : ( NN0 ^m 1o ) --> _V -> ( F o. G ) = ( y e. NN0 |-> ( F ` ( 1o X. { y } ) ) ) ) |
22 |
10 21
|
syl |
|- ( F e. B -> ( F o. G ) = ( y e. NN0 |-> ( F ` ( 1o X. { y } ) ) ) ) |
23 |
5 22
|
eqtr4d |
|- ( F e. B -> A = ( F o. G ) ) |