Metamath Proof Explorer


Theorem psr1basf

Description: Univariate power series base set elements are functions. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses psr1rcl.p
|- P = ( PwSer1 ` R )
psr1rcl.b
|- B = ( Base ` P )
psr1basf.k
|- K = ( Base ` R )
Assertion psr1basf
|- ( F e. B -> F : ( NN0 ^m 1o ) --> K )

Proof

Step Hyp Ref Expression
1 psr1rcl.p
 |-  P = ( PwSer1 ` R )
2 psr1rcl.b
 |-  B = ( Base ` P )
3 psr1basf.k
 |-  K = ( Base ` R )
4 elmapi
 |-  ( F e. ( K ^m ( NN0 ^m 1o ) ) -> F : ( NN0 ^m 1o ) --> K )
5 1 2 3 psr1bas
 |-  B = ( K ^m ( NN0 ^m 1o ) )
6 4 5 eleq2s
 |-  ( F e. B -> F : ( NN0 ^m 1o ) --> K )