Metamath Proof Explorer


Theorem psr1bas

Description: The base set of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses psr1val.1
|- S = ( PwSer1 ` R )
psr1bas2.b
|- B = ( Base ` S )
psr1bas.k
|- K = ( Base ` R )
Assertion psr1bas
|- B = ( K ^m ( NN0 ^m 1o ) )

Proof

Step Hyp Ref Expression
1 psr1val.1
 |-  S = ( PwSer1 ` R )
2 psr1bas2.b
 |-  B = ( Base ` S )
3 psr1bas.k
 |-  K = ( Base ` R )
4 eqid
 |-  ( 1o mPwSer R ) = ( 1o mPwSer R )
5 psr1baslem
 |-  ( NN0 ^m 1o ) = { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin }
6 1 2 4 psr1bas2
 |-  B = ( Base ` ( 1o mPwSer R ) )
7 1on
 |-  1o e. On
8 7 a1i
 |-  ( T. -> 1o e. On )
9 4 3 5 6 8 psrbas
 |-  ( T. -> B = ( K ^m ( NN0 ^m 1o ) ) )
10 9 mptru
 |-  B = ( K ^m ( NN0 ^m 1o ) )