Step |
Hyp |
Ref |
Expression |
1 |
|
rabid2 |
|- ( ( NN0 ^m 1o ) = { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } <-> A. f e. ( NN0 ^m 1o ) ( `' f " NN ) e. Fin ) |
2 |
|
df1o2 |
|- 1o = { (/) } |
3 |
|
snfi |
|- { (/) } e. Fin |
4 |
2 3
|
eqeltri |
|- 1o e. Fin |
5 |
|
cnvimass |
|- ( `' f " NN ) C_ dom f |
6 |
|
elmapi |
|- ( f e. ( NN0 ^m 1o ) -> f : 1o --> NN0 ) |
7 |
5 6
|
fssdm |
|- ( f e. ( NN0 ^m 1o ) -> ( `' f " NN ) C_ 1o ) |
8 |
|
ssfi |
|- ( ( 1o e. Fin /\ ( `' f " NN ) C_ 1o ) -> ( `' f " NN ) e. Fin ) |
9 |
4 7 8
|
sylancr |
|- ( f e. ( NN0 ^m 1o ) -> ( `' f " NN ) e. Fin ) |
10 |
1 9
|
mprgbir |
|- ( NN0 ^m 1o ) = { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } |