| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1rcl.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1rcl.b |
|- B = ( Base ` P ) |
| 3 |
|
ply1basf.k |
|- K = ( Base ` R ) |
| 4 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 5 |
|
eqid |
|- ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) |
| 6 |
|
psr1baslem |
|- ( NN0 ^m 1o ) = { a e. ( NN0 ^m 1o ) | ( `' a " NN ) e. Fin } |
| 7 |
|
id |
|- ( F e. B -> F e. B ) |
| 8 |
1 2
|
ply1bas |
|- B = ( Base ` ( 1o mPoly R ) ) |
| 9 |
7 8
|
eleqtrdi |
|- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) |
| 10 |
4 3 5 6 9
|
mplelf |
|- ( F e. B -> F : ( NN0 ^m 1o ) --> K ) |