Step |
Hyp |
Ref |
Expression |
1 |
|
ply1rcl.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1rcl.b |
|- B = ( Base ` P ) |
3 |
|
ply1basf.k |
|- K = ( Base ` R ) |
4 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
5 |
|
eqid |
|- ( Base ` ( 1o mPoly R ) ) = ( Base ` ( 1o mPoly R ) ) |
6 |
|
psr1baslem |
|- ( NN0 ^m 1o ) = { a e. ( NN0 ^m 1o ) | ( `' a " NN ) e. Fin } |
7 |
|
id |
|- ( F e. B -> F e. B ) |
8 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
9 |
1 8 2
|
ply1bas |
|- B = ( Base ` ( 1o mPoly R ) ) |
10 |
7 9
|
eleqtrdi |
|- ( F e. B -> F e. ( Base ` ( 1o mPoly R ) ) ) |
11 |
4 3 5 6 10
|
mplelf |
|- ( F e. B -> F : ( NN0 ^m 1o ) --> K ) |