Metamath Proof Explorer


Theorem ply1basf

Description: Univariate polynomial base set elements are functions. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses ply1rcl.p P=Poly1R
ply1rcl.b B=BaseP
ply1basf.k K=BaseR
Assertion ply1basf FBF:01𝑜K

Proof

Step Hyp Ref Expression
1 ply1rcl.p P=Poly1R
2 ply1rcl.b B=BaseP
3 ply1basf.k K=BaseR
4 eqid 1𝑜mPolyR=1𝑜mPolyR
5 eqid Base1𝑜mPolyR=Base1𝑜mPolyR
6 psr1baslem 01𝑜=a01𝑜|a-1Fin
7 id FBFB
8 eqid PwSer1R=PwSer1R
9 1 8 2 ply1bas B=Base1𝑜mPolyR
10 7 9 eleqtrdi FBFBase1𝑜mPolyR
11 4 3 5 6 10 mplelf FBF:01𝑜K