Metamath Proof Explorer


Theorem ply1bascl

Description: A univariate polynomial is a univariate power series. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses ply1bascl.p P = Poly 1 R
ply1bascl.b B = Base P
Assertion ply1bascl F B F Base PwSer 1 R

Proof

Step Hyp Ref Expression
1 ply1bascl.p P = Poly 1 R
2 ply1bascl.b B = Base P
3 eqid PwSer 1 R = PwSer 1 R
4 1 3 ply1val P = PwSer 1 R 𝑠 Base 1 𝑜 mPoly R
5 eqid Base PwSer 1 R = Base PwSer 1 R
6 4 5 ressbasss Base P Base PwSer 1 R
7 2 6 eqsstri B Base PwSer 1 R
8 7 sseli F B F Base PwSer 1 R