Metamath Proof Explorer


Theorem ply1bascl

Description: A univariate polynomial is a univariate power series. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses ply1bascl.p
|- P = ( Poly1 ` R )
ply1bascl.b
|- B = ( Base ` P )
Assertion ply1bascl
|- ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) )

Proof

Step Hyp Ref Expression
1 ply1bascl.p
 |-  P = ( Poly1 ` R )
2 ply1bascl.b
 |-  B = ( Base ` P )
3 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
4 1 3 ply1val
 |-  P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) )
5 eqid
 |-  ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) )
6 4 5 ressbasss
 |-  ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) )
7 2 6 eqsstri
 |-  B C_ ( Base ` ( PwSer1 ` R ) )
8 7 sseli
 |-  ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) )