Description: A univariate polynomial is a univariate power series. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1bascl.p | |- P = ( Poly1 ` R ) |
|
| ply1bascl.b | |- B = ( Base ` P ) |
||
| Assertion | ply1bascl | |- ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1bascl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1bascl.b | |- B = ( Base ` P ) |
|
| 3 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
| 4 | 1 3 | ply1val | |- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 5 | eqid | |- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
|
| 6 | 4 5 | ressbasss | |- ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) |
| 7 | 2 6 | eqsstri | |- B C_ ( Base ` ( PwSer1 ` R ) ) |
| 8 | 7 | sseli | |- ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) ) |