Metamath Proof Explorer


Theorem ply1bascl

Description: A univariate polynomial is a univariate power series. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses ply1bascl.p 𝑃 = ( Poly1𝑅 )
ply1bascl.b 𝐵 = ( Base ‘ 𝑃 )
Assertion ply1bascl ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( PwSer1𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 ply1bascl.p 𝑃 = ( Poly1𝑅 )
2 ply1bascl.b 𝐵 = ( Base ‘ 𝑃 )
3 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
4 1 3 ply1val 𝑃 = ( ( PwSer1𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) )
5 eqid ( Base ‘ ( PwSer1𝑅 ) ) = ( Base ‘ ( PwSer1𝑅 ) )
6 4 5 ressbasss ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( PwSer1𝑅 ) )
7 2 6 eqsstri 𝐵 ⊆ ( Base ‘ ( PwSer1𝑅 ) )
8 7 sseli ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( PwSer1𝑅 ) ) )