Description: A univariate polynomial is a univariate power series. (Contributed by Stefan O'Rear, 25-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1bascl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
ply1bascl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
Assertion | ply1bascl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1bascl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
2 | ply1bascl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
3 | eqid | ⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) | |
4 | 1 3 | ply1val | ⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
5 | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) | |
6 | 4 5 | ressbasss | ⊢ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) |
7 | 2 6 | eqsstri | ⊢ 𝐵 ⊆ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) |
8 | 7 | sseli | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |