Metamath Proof Explorer


Theorem mplelf

Description: A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplelf.p P = I mPoly R
mplelf.k K = Base R
mplelf.b B = Base P
mplelf.d D = f 0 I | f -1 Fin
mplelf.x φ X B
Assertion mplelf φ X : D K

Proof

Step Hyp Ref Expression
1 mplelf.p P = I mPoly R
2 mplelf.k K = Base R
3 mplelf.b B = Base P
4 mplelf.d D = f 0 I | f -1 Fin
5 mplelf.x φ X B
6 eqid I mPwSer R = I mPwSer R
7 eqid Base I mPwSer R = Base I mPwSer R
8 1 6 3 7 mplbasss B Base I mPwSer R
9 8 5 sseldi φ X Base I mPwSer R
10 6 2 4 7 9 psrelbas φ X : D K