Metamath Proof Explorer


Theorem mplelf

Description: A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplelf.p P=ImPolyR
mplelf.k K=BaseR
mplelf.b B=BaseP
mplelf.d D=f0I|f-1Fin
mplelf.x φXB
Assertion mplelf φX:DK

Proof

Step Hyp Ref Expression
1 mplelf.p P=ImPolyR
2 mplelf.k K=BaseR
3 mplelf.b B=BaseP
4 mplelf.d D=f0I|f-1Fin
5 mplelf.x φXB
6 eqid ImPwSerR=ImPwSerR
7 eqid BaseImPwSerR=BaseImPwSerR
8 1 6 3 7 mplbasss BBaseImPwSerR
9 8 5 sselid φXBaseImPwSerR
10 6 2 4 7 9 psrelbas φX:DK