Metamath Proof Explorer


Theorem mplelf

Description: A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplelf.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplelf.k 𝐾 = ( Base ‘ 𝑅 )
mplelf.b 𝐵 = ( Base ‘ 𝑃 )
mplelf.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
mplelf.x ( 𝜑𝑋𝐵 )
Assertion mplelf ( 𝜑𝑋 : 𝐷𝐾 )

Proof

Step Hyp Ref Expression
1 mplelf.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplelf.k 𝐾 = ( Base ‘ 𝑅 )
3 mplelf.b 𝐵 = ( Base ‘ 𝑃 )
4 mplelf.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
5 mplelf.x ( 𝜑𝑋𝐵 )
6 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
7 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
8 1 6 3 7 mplbasss 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
9 8 5 sseldi ( 𝜑𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
10 6 2 4 7 9 psrelbas ( 𝜑𝑋 : 𝐷𝐾 )