| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplsubglem.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
mplsubglem.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 3 |
|
mplsubglem.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mplsubglem.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 5 |
|
mplsubglem.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
mplsubglem.0 |
⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
| 7 |
|
mplsubglem.a |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) |
| 8 |
|
mplsubglem.y |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) |
| 9 |
|
mplsubglem.u |
⊢ ( 𝜑 → 𝑈 = { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) |
| 10 |
|
mplsubglem.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 11 |
|
ssrab2 |
⊢ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ⊆ 𝐵 |
| 12 |
9 11
|
eqsstrdi |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐵 ) |
| 13 |
1 5 10 4 3 2
|
psr0cl |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝐵 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 15 |
14 3
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 16 |
|
fconst6g |
⊢ ( 0 ∈ ( Base ‘ 𝑅 ) → ( 𝐷 × { 0 } ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 17 |
10 15 16
|
3syl |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 18 |
|
eldifi |
⊢ ( 𝑢 ∈ ( 𝐷 ∖ ∅ ) → 𝑢 ∈ 𝐷 ) |
| 19 |
3
|
fvexi |
⊢ 0 ∈ V |
| 20 |
19
|
fvconst2 |
⊢ ( 𝑢 ∈ 𝐷 → ( ( 𝐷 × { 0 } ) ‘ 𝑢 ) = 0 ) |
| 21 |
18 20
|
syl |
⊢ ( 𝑢 ∈ ( 𝐷 ∖ ∅ ) → ( ( 𝐷 × { 0 } ) ‘ 𝑢 ) = 0 ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐷 ∖ ∅ ) ) → ( ( 𝐷 × { 0 } ) ‘ 𝑢 ) = 0 ) |
| 23 |
17 22
|
suppss |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) supp 0 ) ⊆ ∅ ) |
| 24 |
|
ss0 |
⊢ ( ( ( 𝐷 × { 0 } ) supp 0 ) ⊆ ∅ → ( ( 𝐷 × { 0 } ) supp 0 ) = ∅ ) |
| 25 |
23 24
|
syl |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) supp 0 ) = ∅ ) |
| 26 |
25 6
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) supp 0 ) ∈ 𝐴 ) |
| 27 |
9
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) ∈ 𝑈 ↔ ( 𝐷 × { 0 } ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 28 |
|
oveq1 |
⊢ ( 𝑔 = ( 𝐷 × { 0 } ) → ( 𝑔 supp 0 ) = ( ( 𝐷 × { 0 } ) supp 0 ) ) |
| 29 |
28
|
eleq1d |
⊢ ( 𝑔 = ( 𝐷 × { 0 } ) → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( ( 𝐷 × { 0 } ) supp 0 ) ∈ 𝐴 ) ) |
| 30 |
29
|
elrab |
⊢ ( ( 𝐷 × { 0 } ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( ( 𝐷 × { 0 } ) ∈ 𝐵 ∧ ( ( 𝐷 × { 0 } ) supp 0 ) ∈ 𝐴 ) ) |
| 31 |
27 30
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) ∈ 𝑈 ↔ ( ( 𝐷 × { 0 } ) ∈ 𝐵 ∧ ( ( 𝐷 × { 0 } ) supp 0 ) ∈ 𝐴 ) ) ) |
| 32 |
13 26 31
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝑈 ) |
| 33 |
32
|
ne0d |
⊢ ( 𝜑 → 𝑈 ≠ ∅ ) |
| 34 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 35 |
10
|
grpmgmd |
⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑅 ∈ Mgm ) |
| 37 |
9
|
eleq2d |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 ↔ 𝑢 ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 38 |
|
oveq1 |
⊢ ( 𝑔 = 𝑢 → ( 𝑔 supp 0 ) = ( 𝑢 supp 0 ) ) |
| 39 |
38
|
eleq1d |
⊢ ( 𝑔 = 𝑢 → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( 𝑢 supp 0 ) ∈ 𝐴 ) ) |
| 40 |
39
|
elrab |
⊢ ( 𝑢 ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( 𝑢 ∈ 𝐵 ∧ ( 𝑢 supp 0 ) ∈ 𝐴 ) ) |
| 41 |
37 40
|
bitrdi |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 ↔ ( 𝑢 ∈ 𝐵 ∧ ( 𝑢 supp 0 ) ∈ 𝐴 ) ) ) |
| 42 |
41
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 ∈ 𝐵 ∧ ( 𝑢 supp 0 ) ∈ 𝐴 ) ) |
| 43 |
42
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ 𝐵 ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑢 ∈ 𝐵 ) |
| 45 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑈 = { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) |
| 46 |
45
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑣 ∈ 𝑈 ↔ 𝑣 ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 47 |
|
oveq1 |
⊢ ( 𝑔 = 𝑣 → ( 𝑔 supp 0 ) = ( 𝑣 supp 0 ) ) |
| 48 |
47
|
eleq1d |
⊢ ( 𝑔 = 𝑣 → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) |
| 49 |
48
|
elrab |
⊢ ( 𝑣 ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( 𝑣 ∈ 𝐵 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) |
| 50 |
46 49
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑣 ∈ 𝑈 ↔ ( 𝑣 ∈ 𝐵 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) ) |
| 51 |
50
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ∈ 𝐵 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) |
| 52 |
51
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ∈ 𝐵 ) |
| 53 |
1 2 34 36 44 52
|
psraddcl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝐵 ) |
| 54 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ V ) |
| 55 |
|
sseq2 |
⊢ ( 𝑥 = ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) |
| 56 |
55
|
imbi1d |
⊢ ( 𝑥 = ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → 𝑦 ∈ 𝐴 ) ) ) |
| 57 |
56
|
albidv |
⊢ ( 𝑥 = ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → 𝑦 ∈ 𝐴 ) ) ) |
| 58 |
8
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 59 |
58
|
alrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 60 |
59
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 61 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 62 |
42
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 supp 0 ) ∈ 𝐴 ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 supp 0 ) ∈ 𝐴 ) |
| 64 |
51
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 supp 0 ) ∈ 𝐴 ) |
| 65 |
7
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) |
| 66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) |
| 67 |
|
uneq1 |
⊢ ( 𝑥 = ( 𝑢 supp 0 ) → ( 𝑥 ∪ 𝑦 ) = ( ( 𝑢 supp 0 ) ∪ 𝑦 ) ) |
| 68 |
67
|
eleq1d |
⊢ ( 𝑥 = ( 𝑢 supp 0 ) → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ↔ ( ( 𝑢 supp 0 ) ∪ 𝑦 ) ∈ 𝐴 ) ) |
| 69 |
|
uneq2 |
⊢ ( 𝑦 = ( 𝑣 supp 0 ) → ( ( 𝑢 supp 0 ) ∪ 𝑦 ) = ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) |
| 70 |
69
|
eleq1d |
⊢ ( 𝑦 = ( 𝑣 supp 0 ) → ( ( ( 𝑢 supp 0 ) ∪ 𝑦 ) ∈ 𝐴 ↔ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ∈ 𝐴 ) ) |
| 71 |
68 70
|
rspc2va |
⊢ ( ( ( ( 𝑢 supp 0 ) ∈ 𝐴 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) → ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ∈ 𝐴 ) |
| 72 |
63 64 66 71
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ∈ 𝐴 ) |
| 73 |
57 61 72
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑦 ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → 𝑦 ∈ 𝐴 ) ) |
| 74 |
1 14 4 2 53
|
psrelbas |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 75 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 76 |
1 2 75 34 44 52
|
psradd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) = ( 𝑢 ∘f ( +g ‘ 𝑅 ) 𝑣 ) ) |
| 77 |
76
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ‘ 𝑘 ) = ( ( 𝑢 ∘f ( +g ‘ 𝑅 ) 𝑣 ) ‘ 𝑘 ) ) |
| 78 |
77
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ‘ 𝑘 ) = ( ( 𝑢 ∘f ( +g ‘ 𝑅 ) 𝑣 ) ‘ 𝑘 ) ) |
| 79 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) → 𝑘 ∈ 𝐷 ) |
| 80 |
1 14 4 2 43
|
psrelbas |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 81 |
80
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑢 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 82 |
81
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑢 Fn 𝐷 ) |
| 83 |
1 14 4 2 52
|
psrelbas |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 84 |
83
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 Fn 𝐷 ) |
| 85 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 86 |
4 85
|
rabex2 |
⊢ 𝐷 ∈ V |
| 87 |
86
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝐷 ∈ V ) |
| 88 |
|
inidm |
⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 |
| 89 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ 𝐷 ) → ( 𝑢 ‘ 𝑘 ) = ( 𝑢 ‘ 𝑘 ) ) |
| 90 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ 𝐷 ) → ( 𝑣 ‘ 𝑘 ) = ( 𝑣 ‘ 𝑘 ) ) |
| 91 |
82 84 87 87 88 89 90
|
ofval |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑢 ∘f ( +g ‘ 𝑅 ) 𝑣 ) ‘ 𝑘 ) = ( ( 𝑢 ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) ) |
| 92 |
79 91
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( ( 𝑢 ∘f ( +g ‘ 𝑅 ) 𝑣 ) ‘ 𝑘 ) = ( ( 𝑢 ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) ) |
| 93 |
|
ssun1 |
⊢ ( 𝑢 supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) |
| 94 |
|
sscon |
⊢ ( ( 𝑢 supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ⊆ ( 𝐷 ∖ ( 𝑢 supp 0 ) ) ) |
| 95 |
93 94
|
ax-mp |
⊢ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ⊆ ( 𝐷 ∖ ( 𝑢 supp 0 ) ) |
| 96 |
95
|
sseli |
⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) → 𝑘 ∈ ( 𝐷 ∖ ( 𝑢 supp 0 ) ) ) |
| 97 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 supp 0 ) ⊆ ( 𝑢 supp 0 ) ) |
| 98 |
86
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝐷 ∈ V ) |
| 99 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 0 ∈ V ) |
| 100 |
80 97 98 99
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑢 supp 0 ) ) ) → ( 𝑢 ‘ 𝑘 ) = 0 ) |
| 101 |
100
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑢 supp 0 ) ) ) → ( 𝑢 ‘ 𝑘 ) = 0 ) |
| 102 |
96 101
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( 𝑢 ‘ 𝑘 ) = 0 ) |
| 103 |
|
ssun2 |
⊢ ( 𝑣 supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) |
| 104 |
|
sscon |
⊢ ( ( 𝑣 supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ⊆ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) |
| 105 |
103 104
|
ax-mp |
⊢ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ⊆ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) |
| 106 |
105
|
sseli |
⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) → 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) |
| 107 |
|
ssidd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 supp 0 ) ⊆ ( 𝑣 supp 0 ) ) |
| 108 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 0 ∈ V ) |
| 109 |
83 107 87 108
|
suppssr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) → ( 𝑣 ‘ 𝑘 ) = 0 ) |
| 110 |
106 109
|
sylan2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( 𝑣 ‘ 𝑘 ) = 0 ) |
| 111 |
102 110
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( ( 𝑢 ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) = ( 0 ( +g ‘ 𝑅 ) 0 ) ) |
| 112 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑅 ∈ Grp ) |
| 113 |
14 75 3
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 114 |
112 15 113
|
syl2anc2 |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 115 |
114
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 116 |
111 115
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( ( 𝑢 ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) = 0 ) |
| 117 |
78 92 116
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ‘ 𝑘 ) = 0 ) |
| 118 |
74 117
|
suppss |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) |
| 119 |
|
sseq1 |
⊢ ( 𝑦 = ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) → ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ↔ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) |
| 120 |
|
eleq1 |
⊢ ( 𝑦 = ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) |
| 121 |
119 120
|
imbi12d |
⊢ ( 𝑦 = ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) → ( ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → 𝑦 ∈ 𝐴 ) ↔ ( ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 122 |
121
|
spcgv |
⊢ ( ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ V → ( ∀ 𝑦 ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → 𝑦 ∈ 𝐴 ) → ( ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 123 |
54 73 118 122
|
syl3c |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) |
| 124 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑈 = { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) |
| 125 |
124
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ↔ ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 126 |
|
oveq1 |
⊢ ( 𝑔 = ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) → ( 𝑔 supp 0 ) = ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ) |
| 127 |
126
|
eleq1d |
⊢ ( 𝑔 = ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) |
| 128 |
127
|
elrab |
⊢ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝐵 ∧ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) |
| 129 |
125 128
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ↔ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝐵 ∧ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 130 |
53 123 129
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ) |
| 131 |
130
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∀ 𝑣 ∈ 𝑈 ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ) |
| 132 |
1 5 10
|
psrgrp |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 133 |
|
eqid |
⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) |
| 134 |
2 133
|
grpinvcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑢 ∈ 𝐵 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝐵 ) |
| 135 |
132 43 134
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝐵 ) |
| 136 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ V ) |
| 137 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑢 supp 0 ) → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ( 𝑢 supp 0 ) ) ) |
| 138 |
137
|
imbi1d |
⊢ ( 𝑥 = ( 𝑢 supp 0 ) → ( ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ⊆ ( 𝑢 supp 0 ) → 𝑦 ∈ 𝐴 ) ) ) |
| 139 |
138
|
albidv |
⊢ ( 𝑥 = ( 𝑢 supp 0 ) → ( ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ⊆ ( 𝑢 supp 0 ) → 𝑦 ∈ 𝐴 ) ) ) |
| 140 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 141 |
139 140 62
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∀ 𝑦 ( 𝑦 ⊆ ( 𝑢 supp 0 ) → 𝑦 ∈ 𝐴 ) ) |
| 142 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝐼 ∈ 𝑊 ) |
| 143 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑅 ∈ Grp ) |
| 144 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 145 |
1 142 143 4 144 2 133 43
|
psrneg |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) = ( ( invg ‘ 𝑅 ) ∘ 𝑢 ) ) |
| 146 |
145
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) = ( ( ( invg ‘ 𝑅 ) ∘ 𝑢 ) supp 0 ) ) |
| 147 |
14 144
|
grpinvfn |
⊢ ( invg ‘ 𝑅 ) Fn ( Base ‘ 𝑅 ) |
| 148 |
147
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( invg ‘ 𝑅 ) Fn ( Base ‘ 𝑅 ) ) |
| 149 |
3 144
|
grpinvid |
⊢ ( 𝑅 ∈ Grp → ( ( invg ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 150 |
143 149
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( invg ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 151 |
148 80 98 99 150
|
suppcoss |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ∘ 𝑢 ) supp 0 ) ⊆ ( 𝑢 supp 0 ) ) |
| 152 |
146 151
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ⊆ ( 𝑢 supp 0 ) ) |
| 153 |
|
sseq1 |
⊢ ( 𝑦 = ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) → ( 𝑦 ⊆ ( 𝑢 supp 0 ) ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ⊆ ( 𝑢 supp 0 ) ) ) |
| 154 |
|
eleq1 |
⊢ ( 𝑦 = ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) → ( 𝑦 ∈ 𝐴 ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) |
| 155 |
153 154
|
imbi12d |
⊢ ( 𝑦 = ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) → ( ( 𝑦 ⊆ ( 𝑢 supp 0 ) → 𝑦 ∈ 𝐴 ) ↔ ( ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ⊆ ( 𝑢 supp 0 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 156 |
155
|
spcgv |
⊢ ( ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ V → ( ∀ 𝑦 ( 𝑦 ⊆ ( 𝑢 supp 0 ) → 𝑦 ∈ 𝐴 ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ⊆ ( 𝑢 supp 0 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 157 |
136 141 152 156
|
syl3c |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) |
| 158 |
45
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ↔ ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 159 |
|
oveq1 |
⊢ ( 𝑔 = ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) → ( 𝑔 supp 0 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ) |
| 160 |
159
|
eleq1d |
⊢ ( 𝑔 = ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) |
| 161 |
160
|
elrab |
⊢ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) |
| 162 |
158 161
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 163 |
135 157 162
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ) |
| 164 |
131 163
|
jca |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ∀ 𝑣 ∈ 𝑈 ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ) ) |
| 165 |
164
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ) ) |
| 166 |
2 34 133
|
issubg2 |
⊢ ( 𝑆 ∈ Grp → ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ↔ ( 𝑈 ⊆ 𝐵 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ) ) ) ) |
| 167 |
132 166
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ↔ ( 𝑈 ⊆ 𝐵 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ) ) ) ) |
| 168 |
12 33 165 167
|
mpbir3and |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |