Metamath Proof Explorer


Theorem grpinvid

Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011)

Ref Expression
Hypotheses grpinvid.u 0 = ( 0g𝐺 )
grpinvid.n 𝑁 = ( invg𝐺 )
Assertion grpinvid ( 𝐺 ∈ Grp → ( 𝑁0 ) = 0 )

Proof

Step Hyp Ref Expression
1 grpinvid.u 0 = ( 0g𝐺 )
2 grpinvid.n 𝑁 = ( invg𝐺 )
3 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
4 3 1 grpidcl ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) )
5 eqid ( +g𝐺 ) = ( +g𝐺 )
6 3 5 1 grplid ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g𝐺 ) 0 ) = 0 )
7 4 6 mpdan ( 𝐺 ∈ Grp → ( 0 ( +g𝐺 ) 0 ) = 0 )
8 3 5 1 2 grpinvid1 ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑁0 ) = 0 ↔ ( 0 ( +g𝐺 ) 0 ) = 0 ) )
9 4 4 8 mpd3an23 ( 𝐺 ∈ Grp → ( ( 𝑁0 ) = 0 ↔ ( 0 ( +g𝐺 ) 0 ) = 0 ) )
10 7 9 mpbird ( 𝐺 ∈ Grp → ( 𝑁0 ) = 0 )