Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvid.u |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
grpinvid.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
4 |
3 1
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
6 |
3 5 1
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
7 |
4 6
|
mpdan |
⊢ ( 𝐺 ∈ Grp → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
8 |
3 5 1 2
|
grpinvid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑁 ‘ 0 ) = 0 ↔ ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) ) |
9 |
4 4 8
|
mpd3an23 |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑁 ‘ 0 ) = 0 ↔ ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) ) |
10 |
7 9
|
mpbird |
⊢ ( 𝐺 ∈ Grp → ( 𝑁 ‘ 0 ) = 0 ) |