Metamath Proof Explorer


Theorem grpinvid

Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011)

Ref Expression
Hypotheses grpinvid.u 0˙=0G
grpinvid.n N=invgG
Assertion grpinvid GGrpN0˙=0˙

Proof

Step Hyp Ref Expression
1 grpinvid.u 0˙=0G
2 grpinvid.n N=invgG
3 eqid BaseG=BaseG
4 3 1 grpidcl GGrp0˙BaseG
5 eqid +G=+G
6 3 5 1 grplid GGrp0˙BaseG0˙+G0˙=0˙
7 4 6 mpdan GGrp0˙+G0˙=0˙
8 3 5 1 2 grpinvid1 GGrp0˙BaseG0˙BaseGN0˙=0˙0˙+G0˙=0˙
9 4 4 8 mpd3an23 GGrpN0˙=0˙0˙+G0˙=0˙
10 7 9 mpbird GGrpN0˙=0˙