Metamath Proof Explorer


Theorem grpinvid

Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011)

Ref Expression
Hypotheses grpinvid.u 0 ˙ = 0 G
grpinvid.n N = inv g G
Assertion grpinvid G Grp N 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 grpinvid.u 0 ˙ = 0 G
2 grpinvid.n N = inv g G
3 eqid Base G = Base G
4 3 1 grpidcl G Grp 0 ˙ Base G
5 eqid + G = + G
6 3 5 1 grplid G Grp 0 ˙ Base G 0 ˙ + G 0 ˙ = 0 ˙
7 4 6 mpdan G Grp 0 ˙ + G 0 ˙ = 0 ˙
8 3 5 1 2 grpinvid1 G Grp 0 ˙ Base G 0 ˙ Base G N 0 ˙ = 0 ˙ 0 ˙ + G 0 ˙ = 0 ˙
9 4 4 8 mpd3an23 G Grp N 0 ˙ = 0 ˙ 0 ˙ + G 0 ˙ = 0 ˙
10 7 9 mpbird G Grp N 0 ˙ = 0 ˙