Metamath Proof Explorer


Theorem grplcan

Description: Left cancellation law for groups. (Contributed by NM, 25-Aug-2011)

Ref Expression
Hypotheses grplcan.b B=BaseG
grplcan.p +˙=+G
Assertion grplcan GGrpXBYBZBZ+˙X=Z+˙YX=Y

Proof

Step Hyp Ref Expression
1 grplcan.b B=BaseG
2 grplcan.p +˙=+G
3 oveq2 Z+˙X=Z+˙YinvgGZ+˙Z+˙X=invgGZ+˙Z+˙Y
4 3 adantl GGrpXBYBZBZ+˙X=Z+˙YinvgGZ+˙Z+˙X=invgGZ+˙Z+˙Y
5 eqid 0G=0G
6 eqid invgG=invgG
7 1 2 5 6 grplinv GGrpZBinvgGZ+˙Z=0G
8 7 adantlr GGrpXBZBinvgGZ+˙Z=0G
9 8 oveq1d GGrpXBZBinvgGZ+˙Z+˙X=0G+˙X
10 1 6 grpinvcl GGrpZBinvgGZB
11 10 adantrl GGrpXBZBinvgGZB
12 simprr GGrpXBZBZB
13 simprl GGrpXBZBXB
14 11 12 13 3jca GGrpXBZBinvgGZBZBXB
15 1 2 grpass GGrpinvgGZBZBXBinvgGZ+˙Z+˙X=invgGZ+˙Z+˙X
16 14 15 syldan GGrpXBZBinvgGZ+˙Z+˙X=invgGZ+˙Z+˙X
17 16 anassrs GGrpXBZBinvgGZ+˙Z+˙X=invgGZ+˙Z+˙X
18 1 2 5 grplid GGrpXB0G+˙X=X
19 18 adantr GGrpXBZB0G+˙X=X
20 9 17 19 3eqtr3d GGrpXBZBinvgGZ+˙Z+˙X=X
21 20 adantrl GGrpXBYBZBinvgGZ+˙Z+˙X=X
22 21 adantr GGrpXBYBZBZ+˙X=Z+˙YinvgGZ+˙Z+˙X=X
23 7 adantrl GGrpYBZBinvgGZ+˙Z=0G
24 23 oveq1d GGrpYBZBinvgGZ+˙Z+˙Y=0G+˙Y
25 10 adantrl GGrpYBZBinvgGZB
26 simprr GGrpYBZBZB
27 simprl GGrpYBZBYB
28 25 26 27 3jca GGrpYBZBinvgGZBZBYB
29 1 2 grpass GGrpinvgGZBZBYBinvgGZ+˙Z+˙Y=invgGZ+˙Z+˙Y
30 28 29 syldan GGrpYBZBinvgGZ+˙Z+˙Y=invgGZ+˙Z+˙Y
31 1 2 5 grplid GGrpYB0G+˙Y=Y
32 31 adantrr GGrpYBZB0G+˙Y=Y
33 24 30 32 3eqtr3d GGrpYBZBinvgGZ+˙Z+˙Y=Y
34 33 adantlr GGrpXBYBZBinvgGZ+˙Z+˙Y=Y
35 34 adantr GGrpXBYBZBZ+˙X=Z+˙YinvgGZ+˙Z+˙Y=Y
36 4 22 35 3eqtr3d GGrpXBYBZBZ+˙X=Z+˙YX=Y
37 36 exp53 GGrpXBYBZBZ+˙X=Z+˙YX=Y
38 37 3imp2 GGrpXBYBZBZ+˙X=Z+˙YX=Y
39 oveq2 X=YZ+˙X=Z+˙Y
40 38 39 impbid1 GGrpXBYBZBZ+˙X=Z+˙YX=Y