Step |
Hyp |
Ref |
Expression |
1 |
|
psrgrp.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrgrp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
psrgrp.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
4 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
8 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Grp ) |
9 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
10 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
11 |
1 6 7 8 9 10
|
psraddcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
12 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
13 |
12
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
17 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
18 |
1 15 16 6 17
|
psrelbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
19 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
20 |
1 15 16 6 19
|
psrelbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
21 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) |
22 |
1 15 16 6 21
|
psrelbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
23 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Grp ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
25 |
15 24
|
grpass |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( +g ‘ 𝑅 ) 𝑠 ) ( +g ‘ 𝑅 ) 𝑡 ) = ( 𝑟 ( +g ‘ 𝑅 ) ( 𝑠 ( +g ‘ 𝑅 ) 𝑡 ) ) ) |
26 |
23 25
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( +g ‘ 𝑅 ) 𝑠 ) ( +g ‘ 𝑅 ) 𝑡 ) = ( 𝑟 ( +g ‘ 𝑅 ) ( 𝑠 ( +g ‘ 𝑅 ) 𝑡 ) ) ) |
27 |
14 18 20 22 26
|
caofass |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
28 |
1 6 24 7 17 19
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
29 |
28
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
30 |
1 6 24 7 19 21
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
32 |
27 29 31
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) |
33 |
11
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
34 |
1 6 24 7 33 21
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∘f ( +g ‘ 𝑅 ) 𝑧 ) ) |
35 |
1 6 7 23 19 21
|
psraddcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) ) |
36 |
1 6 24 7 17 35
|
psradd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) |
37 |
32 34 36
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( +g ‘ 𝑆 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑆 ) 𝑧 ) ) ) |
38 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
39 |
1 2 3 16 38 6
|
psr0cl |
⊢ ( 𝜑 → ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ∈ ( Base ‘ 𝑆 ) ) |
40 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝐼 ∈ 𝑉 ) |
41 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Grp ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
43 |
1 40 41 16 38 6 7 42
|
psr0lid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ( +g ‘ 𝑆 ) 𝑥 ) = 𝑥 ) |
44 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
45 |
1 40 41 16 44 6 42
|
psrnegcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( invg ‘ 𝑅 ) ∘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
46 |
1 40 41 16 44 6 42 38 7
|
psrlinv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( ( invg ‘ 𝑅 ) ∘ 𝑥 ) ( +g ‘ 𝑆 ) 𝑥 ) = ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) |
47 |
4 5 11 37 39 43 45 46
|
isgrpd |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |