Metamath Proof Explorer


Theorem psrgrp

Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrgrp.i ( 𝜑𝐼𝑉 )
psrgrp.r ( 𝜑𝑅 ∈ Grp )
Assertion psrgrp ( 𝜑𝑆 ∈ Grp )

Proof

Step Hyp Ref Expression
1 psrgrp.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrgrp.i ( 𝜑𝐼𝑉 )
3 psrgrp.r ( 𝜑𝑅 ∈ Grp )
4 eqidd ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) )
5 eqidd ( 𝜑 → ( +g𝑆 ) = ( +g𝑆 ) )
6 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
7 eqid ( +g𝑆 ) = ( +g𝑆 )
8 3 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Grp )
9 simp2 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) )
10 simp3 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) )
11 1 6 7 8 9 10 psraddcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) )
12 ovex ( ℕ0m 𝐼 ) ∈ V
13 12 rabex { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V
14 13 a1i ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V )
15 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
16 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
17 simpr1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) )
18 1 15 16 6 17 psrelbas ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
19 simpr2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) )
20 1 15 16 6 19 psrelbas ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
21 simpr3 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) )
22 1 15 16 6 21 psrelbas ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
23 3 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Grp )
24 eqid ( +g𝑅 ) = ( +g𝑅 )
25 15 24 grpass ( ( 𝑅 ∈ Grp ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( +g𝑅 ) 𝑠 ) ( +g𝑅 ) 𝑡 ) = ( 𝑟 ( +g𝑅 ) ( 𝑠 ( +g𝑅 ) 𝑡 ) ) )
26 23 25 sylan ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ 𝑅 ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ∧ 𝑡 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑟 ( +g𝑅 ) 𝑠 ) ( +g𝑅 ) 𝑡 ) = ( 𝑟 ( +g𝑅 ) ( 𝑠 ( +g𝑅 ) 𝑡 ) ) )
27 14 18 20 22 26 caofass ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥f ( +g𝑅 ) 𝑦 ) ∘f ( +g𝑅 ) 𝑧 ) = ( 𝑥f ( +g𝑅 ) ( 𝑦f ( +g𝑅 ) 𝑧 ) ) )
28 1 6 24 7 17 19 psradd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) = ( 𝑥f ( +g𝑅 ) 𝑦 ) )
29 28 oveq1d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ∘f ( +g𝑅 ) 𝑧 ) = ( ( 𝑥f ( +g𝑅 ) 𝑦 ) ∘f ( +g𝑅 ) 𝑧 ) )
30 1 6 24 7 19 21 psradd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( +g𝑆 ) 𝑧 ) = ( 𝑦f ( +g𝑅 ) 𝑧 ) )
31 30 oveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥f ( +g𝑅 ) ( 𝑦 ( +g𝑆 ) 𝑧 ) ) = ( 𝑥f ( +g𝑅 ) ( 𝑦f ( +g𝑅 ) 𝑧 ) ) )
32 27 29 31 3eqtr4d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ∘f ( +g𝑅 ) 𝑧 ) = ( 𝑥f ( +g𝑅 ) ( 𝑦 ( +g𝑆 ) 𝑧 ) ) )
33 11 3adant3r3 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) )
34 1 6 24 7 33 21 psradd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( +g𝑆 ) 𝑧 ) = ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ∘f ( +g𝑅 ) 𝑧 ) )
35 1 6 7 23 19 21 psraddcl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( +g𝑆 ) 𝑧 ) ∈ ( Base ‘ 𝑆 ) )
36 1 6 24 7 17 35 psradd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g𝑆 ) ( 𝑦 ( +g𝑆 ) 𝑧 ) ) = ( 𝑥f ( +g𝑅 ) ( 𝑦 ( +g𝑆 ) 𝑧 ) ) )
37 32 34 36 3eqtr4d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( +g𝑆 ) 𝑧 ) = ( 𝑥 ( +g𝑆 ) ( 𝑦 ( +g𝑆 ) 𝑧 ) ) )
38 eqid ( 0g𝑅 ) = ( 0g𝑅 )
39 1 2 3 16 38 6 psr0cl ( 𝜑 → ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } × { ( 0g𝑅 ) } ) ∈ ( Base ‘ 𝑆 ) )
40 2 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝐼𝑉 )
41 3 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑅 ∈ Grp )
42 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) )
43 1 40 41 16 38 6 7 42 psr0lid ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } × { ( 0g𝑅 ) } ) ( +g𝑆 ) 𝑥 ) = 𝑥 )
44 eqid ( invg𝑅 ) = ( invg𝑅 )
45 1 40 41 16 44 6 42 psrnegcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( invg𝑅 ) ∘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) )
46 1 40 41 16 44 6 42 38 7 psrlinv ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( ( invg𝑅 ) ∘ 𝑥 ) ( +g𝑆 ) 𝑥 ) = ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } × { ( 0g𝑅 ) } ) )
47 4 5 11 37 39 43 45 46 isgrpd ( 𝜑𝑆 ∈ Grp )