Metamath Proof Explorer


Theorem psrbas

Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 8-Jul-2019)

Ref Expression
Hypotheses psrbas.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrbas.k 𝐾 = ( Base ‘ 𝑅 )
psrbas.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
psrbas.b 𝐵 = ( Base ‘ 𝑆 )
psrbas.i ( 𝜑𝐼𝑉 )
Assertion psrbas ( 𝜑𝐵 = ( 𝐾m 𝐷 ) )

Proof

Step Hyp Ref Expression
1 psrbas.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrbas.k 𝐾 = ( Base ‘ 𝑅 )
3 psrbas.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
4 psrbas.b 𝐵 = ( Base ‘ 𝑆 )
5 psrbas.i ( 𝜑𝐼𝑉 )
6 eqid ( +g𝑅 ) = ( +g𝑅 )
7 eqid ( .r𝑅 ) = ( .r𝑅 )
8 eqid ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 )
9 eqidd ( ( 𝜑𝑅 ∈ V ) → ( 𝐾m 𝐷 ) = ( 𝐾m 𝐷 ) )
10 eqid ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) ) = ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) )
11 eqid ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) = ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
12 eqid ( 𝑥𝐾 , 𝑔 ∈ ( 𝐾m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r𝑅 ) 𝑔 ) ) = ( 𝑥𝐾 , 𝑔 ∈ ( 𝐾m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r𝑅 ) 𝑔 ) )
13 eqidd ( ( 𝜑𝑅 ∈ V ) → ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) = ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) )
14 5 adantr ( ( 𝜑𝑅 ∈ V ) → 𝐼𝑉 )
15 simpr ( ( 𝜑𝑅 ∈ V ) → 𝑅 ∈ V )
16 1 2 6 7 8 3 9 10 11 12 13 14 15 psrval ( ( 𝜑𝑅 ∈ V ) → 𝑆 = ( { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥𝐾 , 𝑔 ∈ ( 𝐾m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r𝑅 ) 𝑔 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ⟩ } ) )
17 16 fveq2d ( ( 𝜑𝑅 ∈ V ) → ( Base ‘ 𝑆 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥𝐾 , 𝑔 ∈ ( 𝐾m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r𝑅 ) 𝑔 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ⟩ } ) ) )
18 ovex ( 𝐾m 𝐷 ) ∈ V
19 psrvalstr ( { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥𝐾 , 𝑔 ∈ ( 𝐾m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r𝑅 ) 𝑔 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ⟩ } ) Struct ⟨ 1 , 9 ⟩
20 baseid Base = Slot ( Base ‘ ndx )
21 snsstp1 { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ }
22 ssun1 { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥𝐾 , 𝑔 ∈ ( 𝐾m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r𝑅 ) 𝑔 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ⟩ } )
23 21 22 sstri { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥𝐾 , 𝑔 ∈ ( 𝐾m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r𝑅 ) 𝑔 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ⟩ } )
24 19 20 23 strfv ( ( 𝐾m 𝐷 ) ∈ V → ( 𝐾m 𝐷 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥𝐾 , 𝑔 ∈ ( 𝐾m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r𝑅 ) 𝑔 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ⟩ } ) ) )
25 18 24 ax-mp ( 𝐾m 𝐷 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , ( 𝐾m 𝐷 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑅 ) ↾ ( ( 𝐾m 𝐷 ) × ( 𝐾m 𝐷 ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾m 𝐷 ) , ∈ ( 𝐾m 𝐷 ) ↦ ( 𝑘𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦𝐷𝑦r𝑘 } ↦ ( ( 𝑔𝑥 ) ( .r𝑅 ) ( ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥𝐾 , 𝑔 ∈ ( 𝐾m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r𝑅 ) 𝑔 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ⟩ } ) )
26 17 4 25 3eqtr4g ( ( 𝜑𝑅 ∈ V ) → 𝐵 = ( 𝐾m 𝐷 ) )
27 reldmpsr Rel dom mPwSer
28 27 ovprc2 ( ¬ 𝑅 ∈ V → ( 𝐼 mPwSer 𝑅 ) = ∅ )
29 28 adantl ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ )
30 1 29 syl5eq ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝑆 = ∅ )
31 30 fveq2d ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( Base ‘ 𝑆 ) = ( Base ‘ ∅ ) )
32 base0 ∅ = ( Base ‘ ∅ )
33 31 4 32 3eqtr4g ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐵 = ∅ )
34 fvprc ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ )
35 34 adantl ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( Base ‘ 𝑅 ) = ∅ )
36 2 35 syl5eq ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐾 = ∅ )
37 3 fczpsrbag ( 𝐼𝑉 → ( 𝑥𝐼 ↦ 0 ) ∈ 𝐷 )
38 5 37 syl ( 𝜑 → ( 𝑥𝐼 ↦ 0 ) ∈ 𝐷 )
39 38 adantr ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝑥𝐼 ↦ 0 ) ∈ 𝐷 )
40 39 ne0d ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐷 ≠ ∅ )
41 2 fvexi 𝐾 ∈ V
42 ovex ( ℕ0m 𝐼 ) ∈ V
43 3 42 rabex2 𝐷 ∈ V
44 41 43 map0 ( ( 𝐾m 𝐷 ) = ∅ ↔ ( 𝐾 = ∅ ∧ 𝐷 ≠ ∅ ) )
45 36 40 44 sylanbrc ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝐾m 𝐷 ) = ∅ )
46 33 45 eqtr4d ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐵 = ( 𝐾m 𝐷 ) )
47 26 46 pm2.61dan ( 𝜑𝐵 = ( 𝐾m 𝐷 ) )