Step |
Hyp |
Ref |
Expression |
1 |
|
psrval.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
psrval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
psrval.a |
⊢ + = ( +g ‘ 𝑅 ) |
4 |
|
psrval.m |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
psrval.o |
⊢ 𝑂 = ( TopOpen ‘ 𝑅 ) |
6 |
|
psrval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
7 |
|
psrval.b |
⊢ ( 𝜑 → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |
8 |
|
psrval.p |
⊢ ✚ = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) |
9 |
|
psrval.t |
⊢ × = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
10 |
|
psrval.v |
⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) |
11 |
|
psrval.j |
⊢ ( 𝜑 → 𝐽 = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) ) |
12 |
|
psrval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
13 |
|
psrval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) |
14 |
|
df-psr |
⊢ mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) ) |
16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → 𝑖 = 𝐼 ) |
17 |
16
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
18 |
|
rabeq |
⊢ ( ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
20 |
19 6
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = 𝐷 ) |
21 |
20
|
csbeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ⦋ 𝐷 / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |
22 |
|
ovex |
⊢ ( ℕ0 ↑m 𝑖 ) ∈ V |
23 |
22
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
24 |
20 23
|
eqeltrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → 𝐷 ∈ V ) |
25 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝑟 = 𝑅 ) |
26 |
25
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
27 |
26 2
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑟 ) = 𝐾 ) |
28 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) |
29 |
27 28
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) = ( 𝐾 ↑m 𝐷 ) ) |
30 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |
31 |
29 30
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) = 𝐵 ) |
32 |
31
|
csbeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ⦋ 𝐵 / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |
33 |
|
ovex |
⊢ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) ∈ V |
34 |
31 33
|
eqeltrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝐵 ∈ V ) |
35 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 ) |
36 |
35
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( Base ‘ ndx ) , 𝑏 〉 = 〈 ( Base ‘ ndx ) , 𝐵 〉 ) |
37 |
25
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑟 = 𝑅 ) |
38 |
37
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) |
39 |
38 3
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑟 ) = + ) |
40 |
|
ofeq |
⊢ ( ( +g ‘ 𝑟 ) = + → ∘f ( +g ‘ 𝑟 ) = ∘f + ) |
41 |
39 40
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ∘f ( +g ‘ 𝑟 ) = ∘f + ) |
42 |
35 35
|
xpeq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑏 × 𝑏 ) = ( 𝐵 × 𝐵 ) ) |
43 |
41 42
|
reseq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) ) |
44 |
43 8
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) = ✚ ) |
45 |
44
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 = 〈 ( +g ‘ ndx ) , ✚ 〉 ) |
46 |
28
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑑 = 𝐷 ) |
47 |
|
rabeq |
⊢ ( 𝑑 = 𝐷 → { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
48 |
46 47
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
49 |
37
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
50 |
49 4
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( .r ‘ 𝑟 ) = · ) |
51 |
50
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
52 |
48 51
|
mpteq12dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
53 |
37 52
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
54 |
46 53
|
mpteq12dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
55 |
35 35 54
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
56 |
55 9
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = × ) |
57 |
56
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 = 〈 ( .r ‘ ndx ) , × 〉 ) |
58 |
36 45 57
|
tpeq123d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ) |
59 |
37
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( Scalar ‘ ndx ) , 𝑟 〉 = 〈 ( Scalar ‘ ndx ) , 𝑅 〉 ) |
60 |
27
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( Base ‘ 𝑟 ) = 𝐾 ) |
61 |
|
ofeq |
⊢ ( ( .r ‘ 𝑟 ) = · → ∘f ( .r ‘ 𝑟 ) = ∘f · ) |
62 |
50 61
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ∘f ( .r ‘ 𝑟 ) = ∘f · ) |
63 |
46
|
xpeq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑑 × { 𝑥 } ) = ( 𝐷 × { 𝑥 } ) ) |
64 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑓 = 𝑓 ) |
65 |
62 63 64
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) = ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) |
66 |
60 35 65
|
mpoeq123dv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) ) |
67 |
66 10
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) = ∙ ) |
68 |
67
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 ) |
69 |
37
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( TopOpen ‘ 𝑟 ) = ( TopOpen ‘ 𝑅 ) ) |
70 |
69 5
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( TopOpen ‘ 𝑟 ) = 𝑂 ) |
71 |
70
|
sneqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { ( TopOpen ‘ 𝑟 ) } = { 𝑂 } ) |
72 |
46 71
|
xpeq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) = ( 𝐷 × { 𝑂 } ) ) |
73 |
72
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) ) |
74 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝐽 = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) ) |
75 |
73 74
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) = 𝐽 ) |
76 |
75
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 = 〈 ( TopSet ‘ ndx ) , 𝐽 〉 ) |
77 |
59 68 76
|
tpeq123d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } = { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) |
78 |
58 77
|
uneq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
79 |
34 78
|
csbied |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ⦋ 𝐵 / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
80 |
32 79
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
81 |
24 80
|
csbied |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ⦋ 𝐷 / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
82 |
21 81
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
83 |
12
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
84 |
13
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
85 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∈ V |
86 |
|
tpex |
⊢ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ∈ V |
87 |
85 86
|
unex |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ∈ V |
88 |
87
|
a1i |
⊢ ( 𝜑 → ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ∈ V ) |
89 |
15 82 83 84 88
|
ovmpod |
⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
90 |
1 89
|
syl5eq |
⊢ ( 𝜑 → 𝑆 = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |