Metamath Proof Explorer


Theorem psrval

Description: Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrval.s S = I mPwSer R
psrval.k K = Base R
psrval.a + ˙ = + R
psrval.m · ˙ = R
psrval.o O = TopOpen R
psrval.d D = h 0 I | h -1 Fin
psrval.b φ B = K D
psrval.p ˙ = f + ˙ B × B
psrval.t × ˙ = f B , g B k D R x y D | y f k f x · ˙ g k f x
psrval.v ˙ = x K , f B D × x · ˙ f f
psrval.j φ J = 𝑡 D × O
psrval.i φ I W
psrval.r φ R X
Assertion psrval φ S = Base ndx B + ndx ˙ ndx × ˙ Scalar ndx R ndx ˙ TopSet ndx J

Proof

Step Hyp Ref Expression
1 psrval.s S = I mPwSer R
2 psrval.k K = Base R
3 psrval.a + ˙ = + R
4 psrval.m · ˙ = R
5 psrval.o O = TopOpen R
6 psrval.d D = h 0 I | h -1 Fin
7 psrval.b φ B = K D
8 psrval.p ˙ = f + ˙ B × B
9 psrval.t × ˙ = f B , g B k D R x y D | y f k f x · ˙ g k f x
10 psrval.v ˙ = x K , f B D × x · ˙ f f
11 psrval.j φ J = 𝑡 D × O
12 psrval.i φ I W
13 psrval.r φ R X
14 df-psr mPwSer = i V , r V h 0 i | h -1 Fin / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r
15 14 a1i φ mPwSer = i V , r V h 0 i | h -1 Fin / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r
16 simprl φ i = I r = R i = I
17 16 oveq2d φ i = I r = R 0 i = 0 I
18 rabeq 0 i = 0 I h 0 i | h -1 Fin = h 0 I | h -1 Fin
19 17 18 syl φ i = I r = R h 0 i | h -1 Fin = h 0 I | h -1 Fin
20 19 6 eqtr4di φ i = I r = R h 0 i | h -1 Fin = D
21 20 csbeq1d φ i = I r = R h 0 i | h -1 Fin / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r = D / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r
22 ovex 0 i V
23 22 rabex h 0 i | h -1 Fin V
24 20 23 eqeltrrdi φ i = I r = R D V
25 simplrr φ i = I r = R d = D r = R
26 25 fveq2d φ i = I r = R d = D Base r = Base R
27 26 2 eqtr4di φ i = I r = R d = D Base r = K
28 simpr φ i = I r = R d = D d = D
29 27 28 oveq12d φ i = I r = R d = D Base r d = K D
30 7 ad2antrr φ i = I r = R d = D B = K D
31 29 30 eqtr4d φ i = I r = R d = D Base r d = B
32 31 csbeq1d φ i = I r = R d = D Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r = B / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r
33 ovex Base r d V
34 31 33 eqeltrrdi φ i = I r = R d = D B V
35 simpr φ i = I r = R d = D b = B b = B
36 35 opeq2d φ i = I r = R d = D b = B Base ndx b = Base ndx B
37 25 adantr φ i = I r = R d = D b = B r = R
38 37 fveq2d φ i = I r = R d = D b = B + r = + R
39 38 3 eqtr4di φ i = I r = R d = D b = B + r = + ˙
40 39 ofeqd φ i = I r = R d = D b = B f + r = f + ˙
41 35 35 xpeq12d φ i = I r = R d = D b = B b × b = B × B
42 40 41 reseq12d φ i = I r = R d = D b = B f + r b × b = f + ˙ B × B
43 42 8 eqtr4di φ i = I r = R d = D b = B f + r b × b = ˙
44 43 opeq2d φ i = I r = R d = D b = B + ndx f + r b × b = + ndx ˙
45 28 adantr φ i = I r = R d = D b = B d = D
46 rabeq d = D y d | y f k = y D | y f k
47 45 46 syl φ i = I r = R d = D b = B y d | y f k = y D | y f k
48 37 fveq2d φ i = I r = R d = D b = B r = R
49 48 4 eqtr4di φ i = I r = R d = D b = B r = · ˙
50 49 oveqd φ i = I r = R d = D b = B f x r g k f x = f x · ˙ g k f x
51 47 50 mpteq12dv φ i = I r = R d = D b = B x y d | y f k f x r g k f x = x y D | y f k f x · ˙ g k f x
52 37 51 oveq12d φ i = I r = R d = D b = B r x y d | y f k f x r g k f x = R x y D | y f k f x · ˙ g k f x
53 45 52 mpteq12dv φ i = I r = R d = D b = B k d r x y d | y f k f x r g k f x = k D R x y D | y f k f x · ˙ g k f x
54 35 35 53 mpoeq123dv φ i = I r = R d = D b = B f b , g b k d r x y d | y f k f x r g k f x = f B , g B k D R x y D | y f k f x · ˙ g k f x
55 54 9 eqtr4di φ i = I r = R d = D b = B f b , g b k d r x y d | y f k f x r g k f x = × ˙
56 55 opeq2d φ i = I r = R d = D b = B ndx f b , g b k d r x y d | y f k f x r g k f x = ndx × ˙
57 36 44 56 tpeq123d φ i = I r = R d = D b = B Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x = Base ndx B + ndx ˙ ndx × ˙
58 37 opeq2d φ i = I r = R d = D b = B Scalar ndx r = Scalar ndx R
59 27 adantr φ i = I r = R d = D b = B Base r = K
60 49 ofeqd φ i = I r = R d = D b = B f r = f · ˙
61 45 xpeq1d φ i = I r = R d = D b = B d × x = D × x
62 eqidd φ i = I r = R d = D b = B f = f
63 60 61 62 oveq123d φ i = I r = R d = D b = B d × x r f f = D × x · ˙ f f
64 59 35 63 mpoeq123dv φ i = I r = R d = D b = B x Base r , f b d × x r f f = x K , f B D × x · ˙ f f
65 64 10 eqtr4di φ i = I r = R d = D b = B x Base r , f b d × x r f f = ˙
66 65 opeq2d φ i = I r = R d = D b = B ndx x Base r , f b d × x r f f = ndx ˙
67 37 fveq2d φ i = I r = R d = D b = B TopOpen r = TopOpen R
68 67 5 eqtr4di φ i = I r = R d = D b = B TopOpen r = O
69 68 sneqd φ i = I r = R d = D b = B TopOpen r = O
70 45 69 xpeq12d φ i = I r = R d = D b = B d × TopOpen r = D × O
71 70 fveq2d φ i = I r = R d = D b = B 𝑡 d × TopOpen r = 𝑡 D × O
72 11 ad3antrrr φ i = I r = R d = D b = B J = 𝑡 D × O
73 71 72 eqtr4d φ i = I r = R d = D b = B 𝑡 d × TopOpen r = J
74 73 opeq2d φ i = I r = R d = D b = B TopSet ndx 𝑡 d × TopOpen r = TopSet ndx J
75 58 66 74 tpeq123d φ i = I r = R d = D b = B Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r = Scalar ndx R ndx ˙ TopSet ndx J
76 57 75 uneq12d φ i = I r = R d = D b = B Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r = Base ndx B + ndx ˙ ndx × ˙ Scalar ndx R ndx ˙ TopSet ndx J
77 34 76 csbied φ i = I r = R d = D B / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r = Base ndx B + ndx ˙ ndx × ˙ Scalar ndx R ndx ˙ TopSet ndx J
78 32 77 eqtrd φ i = I r = R d = D Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r = Base ndx B + ndx ˙ ndx × ˙ Scalar ndx R ndx ˙ TopSet ndx J
79 24 78 csbied φ i = I r = R D / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r = Base ndx B + ndx ˙ ndx × ˙ Scalar ndx R ndx ˙ TopSet ndx J
80 21 79 eqtrd φ i = I r = R h 0 i | h -1 Fin / d Base r d / b Base ndx b + ndx f + r b × b ndx f b , g b k d r x y d | y f k f x r g k f x Scalar ndx r ndx x Base r , f b d × x r f f TopSet ndx 𝑡 d × TopOpen r = Base ndx B + ndx ˙ ndx × ˙ Scalar ndx R ndx ˙ TopSet ndx J
81 12 elexd φ I V
82 13 elexd φ R V
83 tpex Base ndx B + ndx ˙ ndx × ˙ V
84 tpex Scalar ndx R ndx ˙ TopSet ndx J V
85 83 84 unex Base ndx B + ndx ˙ ndx × ˙ Scalar ndx R ndx ˙ TopSet ndx J V
86 85 a1i φ Base ndx B + ndx ˙ ndx × ˙ Scalar ndx R ndx ˙ TopSet ndx J V
87 15 80 81 82 86 ovmpod φ I mPwSer R = Base ndx B + ndx ˙ ndx × ˙ Scalar ndx R ndx ˙ TopSet ndx J
88 1 87 eqtrid φ S = Base ndx B + ndx ˙ ndx × ˙ Scalar ndx R ndx ˙ TopSet ndx J