Step |
Hyp |
Ref |
Expression |
1 |
|
psrval.s |
|
2 |
|
psrval.k |
|
3 |
|
psrval.a |
|
4 |
|
psrval.m |
|
5 |
|
psrval.o |
|
6 |
|
psrval.d |
|
7 |
|
psrval.b |
|
8 |
|
psrval.p |
|
9 |
|
psrval.t |
|
10 |
|
psrval.v |
|
11 |
|
psrval.j |
|
12 |
|
psrval.i |
|
13 |
|
psrval.r |
|
14 |
|
df-psr |
|
15 |
14
|
a1i |
|
16 |
|
simprl |
|
17 |
16
|
oveq2d |
|
18 |
|
rabeq |
|
19 |
17 18
|
syl |
|
20 |
19 6
|
eqtr4di |
|
21 |
20
|
csbeq1d |
|
22 |
|
ovex |
|
23 |
22
|
rabex |
|
24 |
20 23
|
eqeltrrdi |
|
25 |
|
simplrr |
|
26 |
25
|
fveq2d |
|
27 |
26 2
|
eqtr4di |
|
28 |
|
simpr |
|
29 |
27 28
|
oveq12d |
|
30 |
7
|
ad2antrr |
|
31 |
29 30
|
eqtr4d |
|
32 |
31
|
csbeq1d |
|
33 |
|
ovex |
|
34 |
31 33
|
eqeltrrdi |
|
35 |
|
simpr |
|
36 |
35
|
opeq2d |
|
37 |
25
|
adantr |
|
38 |
37
|
fveq2d |
|
39 |
38 3
|
eqtr4di |
|
40 |
39
|
ofeqd |
|
41 |
35 35
|
xpeq12d |
|
42 |
40 41
|
reseq12d |
|
43 |
42 8
|
eqtr4di |
|
44 |
43
|
opeq2d |
|
45 |
28
|
adantr |
|
46 |
|
rabeq |
|
47 |
45 46
|
syl |
|
48 |
37
|
fveq2d |
|
49 |
48 4
|
eqtr4di |
|
50 |
49
|
oveqd |
|
51 |
47 50
|
mpteq12dv |
|
52 |
37 51
|
oveq12d |
|
53 |
45 52
|
mpteq12dv |
|
54 |
35 35 53
|
mpoeq123dv |
|
55 |
54 9
|
eqtr4di |
|
56 |
55
|
opeq2d |
|
57 |
36 44 56
|
tpeq123d |
|
58 |
37
|
opeq2d |
|
59 |
27
|
adantr |
|
60 |
49
|
ofeqd |
|
61 |
45
|
xpeq1d |
|
62 |
|
eqidd |
|
63 |
60 61 62
|
oveq123d |
|
64 |
59 35 63
|
mpoeq123dv |
|
65 |
64 10
|
eqtr4di |
|
66 |
65
|
opeq2d |
|
67 |
37
|
fveq2d |
|
68 |
67 5
|
eqtr4di |
|
69 |
68
|
sneqd |
|
70 |
45 69
|
xpeq12d |
|
71 |
70
|
fveq2d |
|
72 |
11
|
ad3antrrr |
|
73 |
71 72
|
eqtr4d |
|
74 |
73
|
opeq2d |
|
75 |
58 66 74
|
tpeq123d |
|
76 |
57 75
|
uneq12d |
|
77 |
34 76
|
csbied |
|
78 |
32 77
|
eqtrd |
|
79 |
24 78
|
csbied |
|
80 |
21 79
|
eqtrd |
|
81 |
12
|
elexd |
|
82 |
13
|
elexd |
|
83 |
|
tpex |
|
84 |
|
tpex |
|
85 |
83 84
|
unex |
|
86 |
85
|
a1i |
|
87 |
15 80 81 82 86
|
ovmpod |
|
88 |
1 87
|
eqtrid |
|