Metamath Proof Explorer


Definition df-psr

Description: Define the algebra of power series over the index set i and with coefficients from the ring r . (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion df-psr mPwSer=iV,rVh0i|h-1Fin/dBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmps classmPwSer
1 vi setvari
2 cvv classV
3 vr setvarr
4 vh setvarh
5 cn0 class0
6 cmap class𝑚
7 1 cv setvari
8 5 7 6 co class0i
9 4 cv setvarh
10 9 ccnv classh-1
11 cn class
12 10 11 cima classh-1
13 cfn classFin
14 12 13 wcel wffh-1Fin
15 14 4 8 crab classh0i|h-1Fin
16 vd setvard
17 cbs classBase
18 3 cv setvarr
19 18 17 cfv classBaser
20 16 cv setvard
21 19 20 6 co classBaserd
22 vb setvarb
23 cnx classndx
24 23 17 cfv classBasendx
25 22 cv setvarb
26 24 25 cop classBasendxb
27 cplusg class+𝑔
28 23 27 cfv class+ndx
29 18 27 cfv class+r
30 29 cof classf+r
31 25 25 cxp classb×b
32 30 31 cres classf+rb×b
33 28 32 cop class+ndxf+rb×b
34 cmulr class𝑟
35 23 34 cfv classndx
36 vf setvarf
37 vg setvarg
38 vk setvark
39 cgsu classΣ𝑔
40 vx setvarx
41 vy setvary
42 41 cv setvary
43 cle class
44 43 cofr classr
45 38 cv setvark
46 42 45 44 wbr wffyfk
47 46 41 20 crab classyd|yfk
48 36 cv setvarf
49 40 cv setvarx
50 49 48 cfv classfx
51 18 34 cfv classr
52 37 cv setvarg
53 cmin class
54 53 cof classf
55 45 49 54 co classkfx
56 55 52 cfv classgkfx
57 50 56 51 co classfxrgkfx
58 40 47 57 cmpt classxyd|yfkfxrgkfx
59 18 58 39 co classrxyd|yfkfxrgkfx
60 38 20 59 cmpt classkdrxyd|yfkfxrgkfx
61 36 37 25 25 60 cmpo classfb,gbkdrxyd|yfkfxrgkfx
62 35 61 cop classndxfb,gbkdrxyd|yfkfxrgkfx
63 26 33 62 ctp classBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfx
64 csca classScalar
65 23 64 cfv classScalarndx
66 65 18 cop classScalarndxr
67 cvsca class𝑠
68 23 67 cfv classndx
69 49 csn classx
70 20 69 cxp classd×x
71 51 cof classfr
72 70 48 71 co classd×xrff
73 40 36 19 25 72 cmpo classxBaser,fbd×xrff
74 68 73 cop classndxxBaser,fbd×xrff
75 cts classTopSet
76 23 75 cfv classTopSetndx
77 cpt class𝑡
78 ctopn classTopOpen
79 18 78 cfv classTopOpenr
80 79 csn classTopOpenr
81 20 80 cxp classd×TopOpenr
82 81 77 cfv class𝑡d×TopOpenr
83 76 82 cop classTopSetndx𝑡d×TopOpenr
84 66 74 83 ctp classScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr
85 63 84 cun classBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr
86 22 21 85 csb classBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr
87 16 15 86 csb classh0i|h-1Fin/dBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr
88 1 3 2 2 87 cmpo classiV,rVh0i|h-1Fin/dBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr
89 0 88 wceq wffmPwSer=iV,rVh0i|h-1Fin/dBaserd/bBasendxb+ndxf+rb×bndxfb,gbkdrxyd|yfkfxrgkfxScalarndxrndxxBaser,fbd×xrffTopSetndx𝑡d×TopOpenr