Metamath Proof Explorer


Definition df-psr

Description: Define the algebra of power series over the index set i and with coefficients from the ring r . (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion df-psr mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmps mPwSer
1 vi 𝑖
2 cvv V
3 vr 𝑟
4 vh
5 cn0 0
6 cmap m
7 1 cv 𝑖
8 5 7 6 co ( ℕ0m 𝑖 )
9 4 cv
10 9 ccnv
11 cn
12 10 11 cima ( “ ℕ )
13 cfn Fin
14 12 13 wcel ( “ ℕ ) ∈ Fin
15 14 4 8 crab { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin }
16 vd 𝑑
17 cbs Base
18 3 cv 𝑟
19 18 17 cfv ( Base ‘ 𝑟 )
20 16 cv 𝑑
21 19 20 6 co ( ( Base ‘ 𝑟 ) ↑m 𝑑 )
22 vb 𝑏
23 cnx ndx
24 23 17 cfv ( Base ‘ ndx )
25 22 cv 𝑏
26 24 25 cop ⟨ ( Base ‘ ndx ) , 𝑏
27 cplusg +g
28 23 27 cfv ( +g ‘ ndx )
29 18 27 cfv ( +g𝑟 )
30 29 cof f ( +g𝑟 )
31 25 25 cxp ( 𝑏 × 𝑏 )
32 30 31 cres ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) )
33 28 32 cop ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩
34 cmulr .r
35 23 34 cfv ( .r ‘ ndx )
36 vf 𝑓
37 vg 𝑔
38 vk 𝑘
39 cgsu Σg
40 vx 𝑥
41 vy 𝑦
42 41 cv 𝑦
43 cle
44 43 cofr r
45 38 cv 𝑘
46 42 45 44 wbr 𝑦r𝑘
47 46 41 20 crab { 𝑦𝑑𝑦r𝑘 }
48 36 cv 𝑓
49 40 cv 𝑥
50 49 48 cfv ( 𝑓𝑥 )
51 18 34 cfv ( .r𝑟 )
52 37 cv 𝑔
53 cmin
54 53 cof f
55 45 49 54 co ( 𝑘f𝑥 )
56 55 52 cfv ( 𝑔 ‘ ( 𝑘f𝑥 ) )
57 50 56 51 co ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) )
58 40 47 57 cmpt ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) )
59 18 58 39 co ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) )
60 38 20 59 cmpt ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) )
61 36 37 25 25 60 cmpo ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) )
62 35 61 cop ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩
63 26 33 62 ctp { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ }
64 csca Scalar
65 23 64 cfv ( Scalar ‘ ndx )
66 65 18 cop ⟨ ( Scalar ‘ ndx ) , 𝑟
67 cvsca ·𝑠
68 23 67 cfv ( ·𝑠 ‘ ndx )
69 49 csn { 𝑥 }
70 20 69 cxp ( 𝑑 × { 𝑥 } )
71 51 cof f ( .r𝑟 )
72 70 48 71 co ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 )
73 40 36 19 25 72 cmpo ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) )
74 68 73 cop ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩
75 cts TopSet
76 23 75 cfv ( TopSet ‘ ndx )
77 cpt t
78 ctopn TopOpen
79 18 78 cfv ( TopOpen ‘ 𝑟 )
80 79 csn { ( TopOpen ‘ 𝑟 ) }
81 20 80 cxp ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } )
82 81 77 cfv ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) )
83 76 82 cop ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩
84 66 74 83 ctp { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ }
85 63 84 cun ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } )
86 22 21 85 csb ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } )
87 16 15 86 csb { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } )
88 1 3 2 2 87 cmpo ( 𝑖 ∈ V , 𝑟 ∈ V ↦ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) )
89 0 88 wceq mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f ( +g𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓𝑏 , 𝑔𝑏 ↦ ( 𝑘𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦𝑑𝑦r𝑘 } ↦ ( ( 𝑓𝑥 ) ( .r𝑟 ) ( 𝑔 ‘ ( 𝑘f𝑥 ) ) ) ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑟 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r𝑟 ) 𝑓 ) ) ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) ⟩ } ) )