Metamath Proof Explorer


Definition df-mvr

Description: Define the generating elements of the power series algebra. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Assertion df-mvr mVar=iV,rVxifh0i|h-1Finiff=yiify=x101r0r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvr classmVar
1 vi setvari
2 cvv classV
3 vr setvarr
4 vx setvarx
5 1 cv setvari
6 vf setvarf
7 vh setvarh
8 cn0 class0
9 cmap class𝑚
10 8 5 9 co class0i
11 7 cv setvarh
12 11 ccnv classh-1
13 cn class
14 12 13 cima classh-1
15 cfn classFin
16 14 15 wcel wffh-1Fin
17 16 7 10 crab classh0i|h-1Fin
18 6 cv setvarf
19 vy setvary
20 19 cv setvary
21 4 cv setvarx
22 20 21 wceq wffy=x
23 c1 class1
24 cc0 class0
25 22 23 24 cif classify=x10
26 19 5 25 cmpt classyiify=x10
27 18 26 wceq wfff=yiify=x10
28 cur class1r
29 3 cv setvarr
30 29 28 cfv class1r
31 c0g class0𝑔
32 29 31 cfv class0r
33 27 30 32 cif classiff=yiify=x101r0r
34 6 17 33 cmpt classfh0i|h-1Finiff=yiify=x101r0r
35 4 5 34 cmpt classxifh0i|h-1Finiff=yiify=x101r0r
36 1 3 2 2 35 cmpo classiV,rVxifh0i|h-1Finiff=yiify=x101r0r
37 0 36 wceq wffmVar=iV,rVxifh0i|h-1Finiff=yiify=x101r0r