Step |
Hyp |
Ref |
Expression |
1 |
|
psrval.s |
|- S = ( I mPwSer R ) |
2 |
|
psrval.k |
|- K = ( Base ` R ) |
3 |
|
psrval.a |
|- .+ = ( +g ` R ) |
4 |
|
psrval.m |
|- .x. = ( .r ` R ) |
5 |
|
psrval.o |
|- O = ( TopOpen ` R ) |
6 |
|
psrval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
7 |
|
psrval.b |
|- ( ph -> B = ( K ^m D ) ) |
8 |
|
psrval.p |
|- .+b = ( oF .+ |` ( B X. B ) ) |
9 |
|
psrval.t |
|- .X. = ( f e. B , g e. B |-> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) ) |
10 |
|
psrval.v |
|- .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) |
11 |
|
psrval.j |
|- ( ph -> J = ( Xt_ ` ( D X. { O } ) ) ) |
12 |
|
psrval.i |
|- ( ph -> I e. W ) |
13 |
|
psrval.r |
|- ( ph -> R e. X ) |
14 |
|
df-psr |
|- mPwSer = ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |
15 |
14
|
a1i |
|- ( ph -> mPwSer = ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) ) |
16 |
|
simprl |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> i = I ) |
17 |
16
|
oveq2d |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
18 |
|
rabeq |
|- ( ( NN0 ^m i ) = ( NN0 ^m I ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
19 |
17 18
|
syl |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
20 |
19 6
|
eqtr4di |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = D ) |
21 |
20
|
csbeq1d |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = [_ D / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |
22 |
|
ovex |
|- ( NN0 ^m i ) e. _V |
23 |
22
|
rabex |
|- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } e. _V |
24 |
20 23
|
eqeltrrdi |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> D e. _V ) |
25 |
|
simplrr |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> r = R ) |
26 |
25
|
fveq2d |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> ( Base ` r ) = ( Base ` R ) ) |
27 |
26 2
|
eqtr4di |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> ( Base ` r ) = K ) |
28 |
|
simpr |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> d = D ) |
29 |
27 28
|
oveq12d |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> ( ( Base ` r ) ^m d ) = ( K ^m D ) ) |
30 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> B = ( K ^m D ) ) |
31 |
29 30
|
eqtr4d |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> ( ( Base ` r ) ^m d ) = B ) |
32 |
31
|
csbeq1d |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = [_ B / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |
33 |
|
ovex |
|- ( ( Base ` r ) ^m d ) e. _V |
34 |
31 33
|
eqeltrrdi |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> B e. _V ) |
35 |
|
simpr |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> b = B ) |
36 |
35
|
opeq2d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , B >. ) |
37 |
25
|
adantr |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> r = R ) |
38 |
37
|
fveq2d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( +g ` r ) = ( +g ` R ) ) |
39 |
38 3
|
eqtr4di |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( +g ` r ) = .+ ) |
40 |
39
|
ofeqd |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> oF ( +g ` r ) = oF .+ ) |
41 |
35 35
|
xpeq12d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( b X. b ) = ( B X. B ) ) |
42 |
40 41
|
reseq12d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( oF ( +g ` r ) |` ( b X. b ) ) = ( oF .+ |` ( B X. B ) ) ) |
43 |
42 8
|
eqtr4di |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( oF ( +g ` r ) |` ( b X. b ) ) = .+b ) |
44 |
43
|
opeq2d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. = <. ( +g ` ndx ) , .+b >. ) |
45 |
28
|
adantr |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> d = D ) |
46 |
|
rabeq |
|- ( d = D -> { y e. d | y oR <_ k } = { y e. D | y oR <_ k } ) |
47 |
45 46
|
syl |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> { y e. d | y oR <_ k } = { y e. D | y oR <_ k } ) |
48 |
37
|
fveq2d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( .r ` r ) = ( .r ` R ) ) |
49 |
48 4
|
eqtr4di |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( .r ` r ) = .x. ) |
50 |
49
|
oveqd |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) = ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) |
51 |
47 50
|
mpteq12dv |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) = ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) |
52 |
37 51
|
oveq12d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) = ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) |
53 |
45 52
|
mpteq12dv |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) ) |
54 |
35 35 53
|
mpoeq123dv |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) = ( f e. B , g e. B |-> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) ) ) |
55 |
54 9
|
eqtr4di |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) = .X. ) |
56 |
55
|
opeq2d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. = <. ( .r ` ndx ) , .X. >. ) |
57 |
36 44 56
|
tpeq123d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } ) |
58 |
37
|
opeq2d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( Scalar ` ndx ) , r >. = <. ( Scalar ` ndx ) , R >. ) |
59 |
27
|
adantr |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( Base ` r ) = K ) |
60 |
49
|
ofeqd |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> oF ( .r ` r ) = oF .x. ) |
61 |
45
|
xpeq1d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( d X. { x } ) = ( D X. { x } ) ) |
62 |
|
eqidd |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> f = f ) |
63 |
60 61 62
|
oveq123d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( ( d X. { x } ) oF ( .r ` r ) f ) = ( ( D X. { x } ) oF .x. f ) ) |
64 |
59 35 63
|
mpoeq123dv |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) ) |
65 |
64 10
|
eqtr4di |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) = .xb ) |
66 |
65
|
opeq2d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. = <. ( .s ` ndx ) , .xb >. ) |
67 |
37
|
fveq2d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( TopOpen ` r ) = ( TopOpen ` R ) ) |
68 |
67 5
|
eqtr4di |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( TopOpen ` r ) = O ) |
69 |
68
|
sneqd |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> { ( TopOpen ` r ) } = { O } ) |
70 |
45 69
|
xpeq12d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( d X. { ( TopOpen ` r ) } ) = ( D X. { O } ) ) |
71 |
70
|
fveq2d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) = ( Xt_ ` ( D X. { O } ) ) ) |
72 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> J = ( Xt_ ` ( D X. { O } ) ) ) |
73 |
71 72
|
eqtr4d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) = J ) |
74 |
73
|
opeq2d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. = <. ( TopSet ` ndx ) , J >. ) |
75 |
58 66 74
|
tpeq123d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } = { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) |
76 |
57 75
|
uneq12d |
|- ( ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) /\ b = B ) -> ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
77 |
34 76
|
csbied |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> [_ B / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
78 |
32 77
|
eqtrd |
|- ( ( ( ph /\ ( i = I /\ r = R ) ) /\ d = D ) -> [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
79 |
24 78
|
csbied |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> [_ D / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
80 |
21 79
|
eqtrd |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
81 |
12
|
elexd |
|- ( ph -> I e. _V ) |
82 |
13
|
elexd |
|- ( ph -> R e. _V ) |
83 |
|
tpex |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } e. _V |
84 |
|
tpex |
|- { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } e. _V |
85 |
83 84
|
unex |
|- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) e. _V |
86 |
85
|
a1i |
|- ( ph -> ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) e. _V ) |
87 |
15 80 81 82 86
|
ovmpod |
|- ( ph -> ( I mPwSer R ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |
88 |
1 87
|
eqtrid |
|- ( ph -> S = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+b >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , .xb >. , <. ( TopSet ` ndx ) , J >. } ) ) |