Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } |
2 |
1
|
rngstr |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } Struct 〈 1 , 3 〉 |
3 |
|
5nn |
⊢ 5 ∈ ℕ |
4 |
|
scandx |
⊢ ( Scalar ‘ ndx ) = 5 |
5 |
|
5lt6 |
⊢ 5 < 6 |
6 |
|
6nn |
⊢ 6 ∈ ℕ |
7 |
|
vscandx |
⊢ ( ·𝑠 ‘ ndx ) = 6 |
8 |
|
6lt9 |
⊢ 6 < 9 |
9 |
|
9nn |
⊢ 9 ∈ ℕ |
10 |
|
tsetndx |
⊢ ( TopSet ‘ ndx ) = 9 |
11 |
3 4 5 6 7 8 9 10
|
strle3 |
⊢ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } Struct 〈 5 , 9 〉 |
12 |
|
3lt5 |
⊢ 3 < 5 |
13 |
2 11 12
|
strleun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) Struct 〈 1 , 9 〉 |