Metamath Proof Explorer


Theorem psrvalstr

Description: The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion psrvalstr ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) Struct ⟨ 1 , 9 ⟩

Proof

Step Hyp Ref Expression
1 eqid { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ }
2 1 rngstr { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } Struct ⟨ 1 , 3 ⟩
3 5nn 5 ∈ ℕ
4 scandx ( Scalar ‘ ndx ) = 5
5 5lt6 5 < 6
6 6nn 6 ∈ ℕ
7 vscandx ( ·𝑠 ‘ ndx ) = 6
8 6lt9 6 < 9
9 9nn 9 ∈ ℕ
10 tsetndx ( TopSet ‘ ndx ) = 9
11 3 4 5 6 7 8 9 10 strle3 { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } Struct ⟨ 5 , 9 ⟩
12 3lt5 3 < 5
13 2 11 12 strleun ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑅 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } ) Struct ⟨ 1 , 9 ⟩