Metamath Proof Explorer


Theorem fczpsrbag

Description: The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019)

Ref Expression
Hypothesis psrbag.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
Assertion fczpsrbag ( 𝐼𝑉 → ( 𝑥𝐼 ↦ 0 ) ∈ 𝐷 )

Proof

Step Hyp Ref Expression
1 psrbag.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
2 ifid if ( 𝑥 = 𝑛 , 0 , 0 ) = 0
3 2 eqcomi 0 = if ( 𝑥 = 𝑛 , 0 , 0 )
4 3 a1i ( 𝐼𝑉 → 0 = if ( 𝑥 = 𝑛 , 0 , 0 ) )
5 4 mpteq2dv ( 𝐼𝑉 → ( 𝑥𝐼 ↦ 0 ) = ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑛 , 0 , 0 ) ) )
6 0nn0 0 ∈ ℕ0
7 1 snifpsrbag ( ( 𝐼𝑉 ∧ 0 ∈ ℕ0 ) → ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑛 , 0 , 0 ) ) ∈ 𝐷 )
8 6 7 mpan2 ( 𝐼𝑉 → ( 𝑥𝐼 ↦ if ( 𝑥 = 𝑛 , 0 , 0 ) ) ∈ 𝐷 )
9 5 8 eqeltrd ( 𝐼𝑉 → ( 𝑥𝐼 ↦ 0 ) ∈ 𝐷 )