Metamath Proof Explorer


Theorem psrbas

Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 8-Jul-2019)

Ref Expression
Hypotheses psrbas.s S=ImPwSerR
psrbas.k K=BaseR
psrbas.d D=f0I|f-1Fin
psrbas.b B=BaseS
psrbas.i φIV
Assertion psrbas φB=KD

Proof

Step Hyp Ref Expression
1 psrbas.s S=ImPwSerR
2 psrbas.k K=BaseR
3 psrbas.d D=f0I|f-1Fin
4 psrbas.b B=BaseS
5 psrbas.i φIV
6 eqid +R=+R
7 eqid R=R
8 eqid TopOpenR=TopOpenR
9 eqidd φRVKD=KD
10 eqid f+RKD×KD=f+RKD×KD
11 eqid gKD,hKDkDRxyD|yfkgxRhkfx=gKD,hKDkDRxyD|yfkgxRhkfx
12 eqid xK,gKDD×xRfg=xK,gKDD×xRfg
13 eqidd φRV𝑡D×TopOpenR=𝑡D×TopOpenR
14 5 adantr φRVIV
15 simpr φRVRV
16 1 2 6 7 8 3 9 10 11 12 13 14 15 psrval φRVS=BasendxKD+ndxf+RKD×KDndxgKD,hKDkDRxyD|yfkgxRhkfxScalarndxRndxxK,gKDD×xRfgTopSetndx𝑡D×TopOpenR
17 16 fveq2d φRVBaseS=BaseBasendxKD+ndxf+RKD×KDndxgKD,hKDkDRxyD|yfkgxRhkfxScalarndxRndxxK,gKDD×xRfgTopSetndx𝑡D×TopOpenR
18 ovex KDV
19 psrvalstr BasendxKD+ndxf+RKD×KDndxgKD,hKDkDRxyD|yfkgxRhkfxScalarndxRndxxK,gKDD×xRfgTopSetndx𝑡D×TopOpenRStruct19
20 baseid Base=SlotBasendx
21 snsstp1 BasendxKDBasendxKD+ndxf+RKD×KDndxgKD,hKDkDRxyD|yfkgxRhkfx
22 ssun1 BasendxKD+ndxf+RKD×KDndxgKD,hKDkDRxyD|yfkgxRhkfxBasendxKD+ndxf+RKD×KDndxgKD,hKDkDRxyD|yfkgxRhkfxScalarndxRndxxK,gKDD×xRfgTopSetndx𝑡D×TopOpenR
23 21 22 sstri BasendxKDBasendxKD+ndxf+RKD×KDndxgKD,hKDkDRxyD|yfkgxRhkfxScalarndxRndxxK,gKDD×xRfgTopSetndx𝑡D×TopOpenR
24 19 20 23 strfv KDVKD=BaseBasendxKD+ndxf+RKD×KDndxgKD,hKDkDRxyD|yfkgxRhkfxScalarndxRndxxK,gKDD×xRfgTopSetndx𝑡D×TopOpenR
25 18 24 ax-mp KD=BaseBasendxKD+ndxf+RKD×KDndxgKD,hKDkDRxyD|yfkgxRhkfxScalarndxRndxxK,gKDD×xRfgTopSetndx𝑡D×TopOpenR
26 17 4 25 3eqtr4g φRVB=KD
27 reldmpsr ReldommPwSer
28 27 ovprc2 ¬RVImPwSerR=
29 28 adantl φ¬RVImPwSerR=
30 1 29 eqtrid φ¬RVS=
31 30 fveq2d φ¬RVBaseS=Base
32 base0 =Base
33 31 4 32 3eqtr4g φ¬RVB=
34 fvprc ¬RVBaseR=
35 34 adantl φ¬RVBaseR=
36 2 35 eqtrid φ¬RVK=
37 3 fczpsrbag IVxI0D
38 5 37 syl φxI0D
39 38 adantr φ¬RVxI0D
40 39 ne0d φ¬RVD
41 2 fvexi KV
42 ovex 0IV
43 3 42 rabex2 DV
44 41 43 map0 KD=K=D
45 36 40 44 sylanbrc φ¬RVKD=
46 33 45 eqtr4d φ¬RVB=KD
47 26 46 pm2.61dan φB=KD