Metamath Proof Explorer


Theorem psrneg

Description: The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrgrp.i ( 𝜑𝐼𝑉 )
psrgrp.r ( 𝜑𝑅 ∈ Grp )
psrneg.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
psrneg.i 𝑁 = ( invg𝑅 )
psrneg.b 𝐵 = ( Base ‘ 𝑆 )
psrneg.m 𝑀 = ( invg𝑆 )
psrneg.x ( 𝜑𝑋𝐵 )
Assertion psrneg ( 𝜑 → ( 𝑀𝑋 ) = ( 𝑁𝑋 ) )

Proof

Step Hyp Ref Expression
1 psrgrp.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrgrp.i ( 𝜑𝐼𝑉 )
3 psrgrp.r ( 𝜑𝑅 ∈ Grp )
4 psrneg.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
5 psrneg.i 𝑁 = ( invg𝑅 )
6 psrneg.b 𝐵 = ( Base ‘ 𝑆 )
7 psrneg.m 𝑀 = ( invg𝑆 )
8 psrneg.x ( 𝜑𝑋𝐵 )
9 eqid ( 0g𝑅 ) = ( 0g𝑅 )
10 eqid ( +g𝑆 ) = ( +g𝑆 )
11 1 2 3 4 5 6 8 9 10 psrlinv ( 𝜑 → ( ( 𝑁𝑋 ) ( +g𝑆 ) 𝑋 ) = ( 𝐷 × { ( 0g𝑅 ) } ) )
12 eqid ( 0g𝑆 ) = ( 0g𝑆 )
13 1 2 3 4 9 12 psr0 ( 𝜑 → ( 0g𝑆 ) = ( 𝐷 × { ( 0g𝑅 ) } ) )
14 11 13 eqtr4d ( 𝜑 → ( ( 𝑁𝑋 ) ( +g𝑆 ) 𝑋 ) = ( 0g𝑆 ) )
15 1 2 3 psrgrp ( 𝜑𝑆 ∈ Grp )
16 1 2 3 4 5 6 8 psrnegcl ( 𝜑 → ( 𝑁𝑋 ) ∈ 𝐵 )
17 6 10 12 7 grpinvid2 ( ( 𝑆 ∈ Grp ∧ 𝑋𝐵 ∧ ( 𝑁𝑋 ) ∈ 𝐵 ) → ( ( 𝑀𝑋 ) = ( 𝑁𝑋 ) ↔ ( ( 𝑁𝑋 ) ( +g𝑆 ) 𝑋 ) = ( 0g𝑆 ) ) )
18 15 8 16 17 syl3anc ( 𝜑 → ( ( 𝑀𝑋 ) = ( 𝑁𝑋 ) ↔ ( ( 𝑁𝑋 ) ( +g𝑆 ) 𝑋 ) = ( 0g𝑆 ) ) )
19 14 18 mpbird ( 𝜑 → ( 𝑀𝑋 ) = ( 𝑁𝑋 ) )