Metamath Proof Explorer


Definition df-mpl

Description: Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree). (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Assertion df-mpl mPoly=iV,rVimPwSerr/ww𝑠fBasew|finSupp0rf

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmpl classmPoly
1 vi setvari
2 cvv classV
3 vr setvarr
4 1 cv setvari
5 cmps classmPwSer
6 3 cv setvarr
7 4 6 5 co classimPwSerr
8 vw setvarw
9 8 cv setvarw
10 cress class𝑠
11 vf setvarf
12 cbs classBase
13 9 12 cfv classBasew
14 11 cv setvarf
15 cfsupp classfinSupp
16 c0g class0𝑔
17 6 16 cfv class0r
18 14 17 15 wbr wfffinSupp0rf
19 18 11 13 crab classfBasew|finSupp0rf
20 9 19 10 co classw𝑠fBasew|finSupp0rf
21 8 7 20 csb classimPwSerr/ww𝑠fBasew|finSupp0rf
22 1 3 2 2 21 cmpo classiV,rVimPwSerr/ww𝑠fBasew|finSupp0rf
23 0 22 wceq wffmPoly=iV,rVimPwSerr/ww𝑠fBasew|finSupp0rf