Metamath Proof Explorer


Theorem mplbasss

Description: The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplval2.p P=ImPolyR
mplval2.s S=ImPwSerR
mplval2.u U=BaseP
mplbasss.b B=BaseS
Assertion mplbasss UB

Proof

Step Hyp Ref Expression
1 mplval2.p P=ImPolyR
2 mplval2.s S=ImPwSerR
3 mplval2.u U=BaseP
4 mplbasss.b B=BaseS
5 eqid 0R=0R
6 1 2 4 5 3 mplbas U=fB|finSupp0Rf
7 6 ssrab3 UB