Metamath Proof Explorer


Theorem mplbas

Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplval.p P=ImPolyR
mplval.s S=ImPwSerR
mplval.b B=BaseS
mplval.z 0˙=0R
mplbas.u U=BaseP
Assertion mplbas U=fB|finSupp0˙f

Proof

Step Hyp Ref Expression
1 mplval.p P=ImPolyR
2 mplval.s S=ImPwSerR
3 mplval.b B=BaseS
4 mplval.z 0˙=0R
5 mplbas.u U=BaseP
6 ssrab2 fB|finSupp0˙fB
7 eqid fB|finSupp0˙f=fB|finSupp0˙f
8 1 2 3 4 7 mplval P=S𝑠fB|finSupp0˙f
9 8 3 ressbas2 fB|finSupp0˙fBfB|finSupp0˙f=BaseP
10 6 9 ax-mp fB|finSupp0˙f=BaseP
11 5 10 eqtr4i U=fB|finSupp0˙f